
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints axe available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Com pany

300 North Z eeb Road, Ann Arbor, Ml 48106-1346 USA
313 /761-4700 800 /521 -0600

www.manaraa.com

Order N um ber 9434067

A flexible oblivious router architecture

Park, Joonho, Ph.D.

State University of New York at Binghamton, 1994

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

www.manaraa.com

A FLEXIBLE OBLIVIOUS RO UTER A R C H IT E C T U R E

BY

JOONHO PARK

B.S., S tate University of New York at Binghamton, 1986
M.S., The Pennsylvania S tate University, 1988

DISSERTATION

Subm itted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Advanced Technology with

Specialization in Computer Engineering
in the Graduate School of the
State University of New York

at Binghamton

May 1994

www.manaraa.com

Copyright by Joonho Park, 1994
All Rights Reserved

www.manaraa.com

Accepted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Advanced Technology with

Specialization in Computer Engineering
in the Graduate School of the
State University of New York

at Binghamton

Prof. Stamatis Vassiliadis
Electrical Engineering
(Co-advisor)

Prof. Jose G. Delgado-Frias
Electrical Engineering
(Committee Chairman
and Co-advisor)

Prof. Craig A. Bergman
Electrical Engineering
(Member)

Prof. Fernando Guzman
Mathematical Science
(Member)

Dr. Joseph F. Skovira
IBM Glendale Lab.
(External Examiner)

Date

Date

Date

\ V̂TLV-UJ-V <^Q Date S /4 /< Y \

Date

www.manaraa.com

ABSTRACT

A FLEXIBLE OBLIVIOUS ROUTER ARCHITECTURE

In this study, a flexible oblivious router architecture and evaluation of a Dy

namically Allocated Multi-Queue (DAMQ) buffer are presented. The architecture

is suitable for current technologies and is intended for multiprocessor and massively

parallel systems. In the first part of our study, we explore the possibility of propos

ing a general purpose router architecture. Our study shows that the interconnection

networks classified as trees, cubes, meshes and multistage interconnection networks

require only a few instructions for executing their routing algorithms. Our investi

gation strongly suggests that a common router architecture can satisfy at least 40

network topologies with the introduction of a few, very simple to implement instruc

tions. Furthermore, the proposed architecture provides a programming capability

that allows other oblivious routing algorithms not considered in our investigation

to be accommodated. Our overall conclusion is that general purpose cost effective

routers can potentially be designed that perform equally well as customized rout

ing logic, suggesting the possibility of a common router for multiple interconnection

networks.

The second part of this study concentrates on a buffer management scheme of

a router and its evaluation. We have proposed a new way to implement a Dynami

cally Allocated Multi-Queue (DAMQ) buffer with a scheme called “self-compacting

buffer”. This technique is efficient in that the amount of hardware required to

www.manaraa.com

manage the buffers is significantly less than previously built routers while it offers

high performance by exploiting more channel bandwidth than a First-In F irst-O ut

(FIFO) buffer. We also report extensive simulation results comparing the per

formance of a self-compacting buffer against the ideal buffer managem ent scheme.

The comparison extends previous work by considering a much broader range of net

work topologies, including several examples of k-ary n-cubes and delta networks.

In addition, we introduce a single router simulation method th a t can quickly and

accurately approxim ate the performance of an entire network. The single router

simulation is much smaller in its size and faster by an order of m agnitude than the

full scale simulation; however it predicts performance with remarkable accuracy.

v

www.manaraa.com

Dedicated to my wife,

Jamie

www.manaraa.com

ACKNOW LEDGMENTS

The completion of this dissertation would not have been possible without the

help of many people. I wish to thank my advisor, Professor Stam atis Vassiliadis,

for his constant advice, ideas and support. He gave encouragement and guidance

for me to successfully complete this work. He also provided me with an opportunity

to go one semester, full time study on campus which was extremely helpful to focus

on the research. It is hard to describe my appreciation to him in words. I would

also like to express my sincere gratitude to m}r advisor and chairman of the thesis

committee, Professor Jose Delgado-Frias, for his long support, enthusiasm, so many

helpful discussions and comments throughout my graduate study. His confidence in

me kept me going and made it possible to finish the hard work. My sincere thanks

also go to Dr. Brian W. O’krafka for his technical support and encouragement to

complete two of my papers. He always shared his busy moments with me to discuss

papers and suggested ways to improve the quality of the papers. I want to thank

my thesis committee members, Professor Craig A. Bergman, Professor Fernando

Guzman and Dr. Joseph F. Skovira for their valuable comments, corrections and

support. I especially want to thank Professor Craig A. Bergman for his extra help

that improved my dissertation technically as well as grammatically.

I am grateful to many people in IBM Endicott. I owe a lot to Gil Martino

who did proof-reading of my dissertation. He patiently corrected my dissertation

and gave me valuable comments that made the dissertation more readable and

professional. I want to thank my managers, Hanif Dandia and Pete S. Morelli, for

www.manaraa.com

supporting me through the Graduate Work Study Program. I would also like to

thank my team members, Frank V. Paxhia, Mike A. Leska and Keith J. Kobel for

tolerating my busy schedule.

There are so many friends who supported me. I wish to thank Professor Jong

Kim for his consistent support with his brilliancy. I also want to thank Professor

Joonwon Lee for his encouragement. My thanks also go to so many friends in

Binghamton for keeping me alive with coffee breaks, beers and jokes.

I thank my parents and in-laws for their love and confidence in me. Their

love and prayers gave me the strength to withstand and overcome difficult times.

Last, but not least, I am grateful to my wife, Jamie, for her love, endless

support, patience and encouragement. She has suffered for five years to support

my study. She deserves special thanks, that will last forever. And my daughter,

Minji, I thank her for being there. Her smile and welcome at the door are the best

gifts I receive every day. Finally, I thank my Lord for giving me such happiness

and an opportunity to achieve one of the great goals in my life.

www.manaraa.com

TABLE OF CONTENTS

A B S T R A C T ... iv

A C K N O W L E D G M E N T S .. vii

L IS T O F T A B L E S ... xi

L IS T O F F IG U R E S ... xii

CH A PTER

1 IN T R O D U C T IO N .. 1

1.1 Dissertation O u t l in e ... 8

2 LITERATURE SURVEY .. 10

2.1 Network Topology .. 11

2.1.1 Static Interconnection N e tw o r k ... 12

2.1.2 Dynamic Interconnection N etw ork ... 13

2.2 Switching T echn iques.. 16

2.3 Flow Control ... 19

2.4 V irtual C h a n n e l... 22

2.5 D ead lock .. 24

2.6 Routing A lg o r i th m .. 26

2.7 Crossbar Switch ... 34

2.8 S u m m a r y ... 35

3 FLEXIBLE OBLIVIOUS RO U TER A R C H IT E C T U R E 39

3.1 Routing A lg o r ith m s .. 40

3.2 Flexible Router A rc h i te c tu re ... 41

3.2.1 Routing Algorithm Handler Architectux-e 43

3.2.2 S to r a g e 52

3.2.3 The Local Communication Contioller Mechanism 54

3.3 The Opei’ating E n v iro n m en t... 56

ix

www.manaraa.com

3.4 Routing Program E x a m p le s .. 58

3.5 Program C h a ra c te r is tic s .. 64

3.6 C onclusion.. 64

4 DESIGN AND EVALUATION OF A DAMQ MULTIPROCESSOR NET

W ORK ROUTER WITH SELF-COMPACTING B U F F E R S 69

4.1 Implementing DAMQ Buffers with Self-Compacting B uffers.............. 70

4.1.1 Self-Compacting B u f f e r s .. 73

4.1.2 V a ria tio n s ... 92

4.2 Performance of DAMQ Buffers in ifc-ary n-cubes and Delta Networks 96

4.2.1 Methodology .. 96

4.2.2 Performance of fc-ary re-cubes Constructed with DAMQ Buffers 102

4.2.3 Performance of Delta Networks Constructed with DAMQ

B uffers ..112

4.3 C onclusion..123

5 INPUT AND OUTPUT PORT CONTROLLER ARCHITECTURE AND

ORGANIZATION ..126

5.1 Input Port Controller A rc h ite c tu re ... 126

5.2 O utput Port Controller A rch itec tu re ..131

5.3 C o n c lu s io n .. 133

6 CONCLUSION AND FUTURE S T U D Y .. 136

6.1 M ajor C o n tr ib u tio n s ... 138

6.2 Future Research D irections... 139

www.manaraa.com

LIST OF TABLES

2.1 Routers and T y p e s .. 38

3.1 General Instruction S e t . . 44
3.2 Instructions Required for Interconnection N e tw o rk s 45
3.3 Control Instruction S e t ... 48

4.1 Write Operation ... 89
4.2 Read Operation ... 89
4.3 Hardware Complexity of ComCobb Chip and Self-compacting Buffer . 92
4.4 An Example Overhead Calculation with 8 Bytes per Block....................... 93

www.manaraa.com

LIST OF FIG U R E S

1.1 Alternative Designs of B u ffe rs 4

1.2 Schematic Diagram of Ideal Buffer... 5

2.1 Model of Concurrent Processing Systems .. 11

2.2 Topology of Interconnection Networks ... 12

2.3 Examples of Static Interconnection Networks: (a) Linear (b) Star (c)
Ring (d) Mesh (e) Hypercube (f) Binary Tree (g) Completely Connected 14

2.4 Configuration of a Ring Structure on Baseline N e tw o rk 15

2.5 Operation of Three Different Switching Systems 17

2.6 Packet-Switching Terminology ... 19

2.7 Wormhole R o u t in g .. 20

2.8 Four Virtual Channels Through a Physical Channel 23

2.9 Deadlock in a 4-cycle ... 25

2.10 An Example of Digit R o u t in g .. 27

2.11 An Example of e-cube Routing in Hypercube .. 28

2.12 A Binary Tree with Even-odd N u m b e r in g ... 31

2.13 An Example of Interval Labeling and R o u tin g .. 33

2.14 Schematic Diagram of A Crossbar Switch ... 35

3.1 Logical Structure of a R o u t e r .. 42

3.2 Logical Structure of an Input C o n tro l le r .. 43

3.3 Three Instruction F o rm a ts .. 46

3.4 Status Register F o rm a t... 49

xii

www.manaraa.com

3.5 Conceptual Structure of Routing Algorithm Handler 52

3.6 Reserved Spaces in Local Communication C o n tr o l le r 55

3.7 Hypercube N etw ork.. 58

3.8 Sequence of Communication Caused by the MSG In s tru c tio n 62

3.9 The Labeling of a 4x3 Mesh: (a) Physical Network; (b) High-Channel
Network; (c) Low-Channel Network... 63

3.10 Frequency of Instruction Usage in the 40 Networks Shown in Table 3.1 65

3.11 Routing Program Length for Tree N e tw o rk s 65

3.12 Routing Program Length for Cube N etw orks....................................... 66

3.13 Routing Program Length for Mesh N etw orks........................... 66

3.14 Routing Program Length for M ultistage Interconnection Networks . . . 67

3.15 Routing Program Length for Other Networks ... 67

4.1 (a) Logical Blocks of a Router, (b) Logical Blocks of a Input Controller. 71

4.2 Logical Structure of Packet Flow C o n tro l le r 72

4.3 Buffer S p ace .. 75

4.4 Buffer O rganization .. 76

4.5 Bit Setting Example of Single W rite .. 77

4.6 Bit Setting Example of Single R e a d 78

4.7 Bit Setting Example of Simultaneous Read/W rite (Read Address <
W rite Address) .. 79

4.8 Bit Setting Example of Simultaneous Read/W rite (Read Address >
W rite A d d re s s) .. 81

4.9 (a) Logical View of Binary Tree Method, (b) An Example of Setting
Tag B its.. 83

4.10 Logic a t Each Node of T r e e ... 85

xiii

www.manaraa.com

4.11 Physical Organization of How Address Bits Are Passed to Comparators. 86

4.12 An Example Organization of Packet Flow C o n tro l le r 88

4.13 Timing Diagram of ComCoBB Chip .. 91

4.14 Flow of Buffer Controller for Store-and-forward. (a) Writing to Buffer
(b) Reading from Buffer.. 97

4.15 Flow of Buffer Controller for Wormhole, (a) Writing to Buffer (b) Read
ing from B u f f e r .. 98

4.16 Flow of Buffer Controller for Virtual Cut-through, (a) Writing to Buffer.
(b) Reading from Buffer.. 99

4.17 Routing Probability Distribution for a Unidirectional 3-D Torus Net
work (k = 10 n — 3)... 103

4.18 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 3-D Torus (k = 6 n = 3)...............................106

4.19 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 3-D Torus (k = 8 n = 3)...............................107

4.20 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for Hyper cube (k = 2 n = 8)..............................108

4.21 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for Hypercube (k = 2 n = 7)..............................109

4.22 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 2-D Mesh {k = 10 n — 2)..............................110

4.23 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 2-D Mesh (k = 8 n = 2). I l l

4.24 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 2D Mesh (k = 10 n — 2). Packet size is
2 unit packets... . 113

xiv

www.manaraa.com

XV

4.25 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 2D Mesh (k = 10 n = 2). Packet size is
4 unit packets... 114

4.26 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 2D Mesh (k = 10 n — 2). Packet size is
8 unit packets... 115

4.27 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 4 x 4 switch Omega network with 256
nodes (4 stages)..118

4.28 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for 4 x 4 Switch Omega Network with 64
Nodes (3 stages)...119

4.29 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for Omega Network (256 nodes). Packet
size is 2 unit packets... 120

4.30 Comparing the Network Latency of DAMQ Scheme to the Ideal and
FIFO Buffer Management Scheme for Omega Network (256 nodes).
Packet size is 4 unit packets... 121

4.31 Comparing the Network Latency of DAMQ Buffer to the Ideal and FIFO
Buffer Management Scheme for Omega network (256 nodes). Packet
size is 8 unit packets... 122

4.32 Comparison of DAMQ Buffer to FIFO with Random Packet Size for
Omega Nework...124

5.1 Logical Block Diagram of a Port Controller .. 127

5.2 Input/O utpu t Port Protocol .. 131

5.3 Packet Format ..132

5.4 Logical Block Diagram of an O utput P o r t ...134

5.5 Input/O utpu t Port in 2 x 2 Baseline N e tw o rk135

www.manaraa.com

CHAPTER 1

INTRODUCTION

Interconnection networks play an important role in the design of parallel

systems; they influence the performance of such systems. A key component of an

interconnection network is a router which executes different switching technologies,

flow controls and routing algorithms [1]. The router can be categorized into two

major types depending on the network topology it supports. The first type of router

relates to the networks with a fixed topology. In this case, the router performs only

one routing algorithm which depends mainly on the chosen topology. Examples

within this category include routers such as the Torus routing chip [2], the router

supported in the iPSC/2 [3] and Cosmic Cube router [4]. The second type of router

relates to the networks with physically reconfigurable topologies. In such systems,

the router is able to execute multiple routing algorithms or an algorithm that can

support multiple topologies. The Intel/CM U’s iWARP[5] and INMOS transputer

[6] are examples of this type of router. In this scheme, there are two approaches in

routing, namely source routing and lookup table routing [7]. In source routing, the

source node determines the routing paths on the underlying network topology. The

packet used to communicate between processors has to carry the complete routing

information in the header. In lookup table routing, each router has an entry in a

table that indicates which output channel has to be used to reach the destination

node.

1

www.manaraa.com

2

If a router is built using a network with a fixed topology, a different router

has to be developed for different network topologies. The implication here is that

the router has no flexibility and thus it can not be used as an “off the shelf” com

ponent for the design of parallel systems. The second type of router resolves the

previously mentioned problem since theses routers can be used as “off the shelf”

components to satisfy various network requirements, but introduce some new prob

lems. In particular, in the source routing scheme, the network bandwidth can be

wasted when all the complete routing information is included in the header packet.

The lookup table can be viewed as flexible, and a potential of hand shaking with

necessary computations can be envisioned with the processing element. However,

because the routing chip performs no useful operations besides accessing memory

locations, the execution of the algorithm can be slow when arbitrary networks are

implemented and the look-up table is kept to a small size, especially when the

destination address spaces are not easily partitioned into contiguous ranges.

In the first part of our study, we propose a flexible router architecture that

can support fixed and/or reconfigurable network topologies. Our work is based on

the investigation of 40 network topologies representing five families of networks.

Our proposal can be viewed as a general purpose router architecture. In this study,

the term architecture denotes the attributes of a system as seen by the programmer,

i.e. conceptual structure and functional behavior, and it is distinct from the orga

nization of the dataflow and physical implementation of the machine. Furthermore,

it can support interval labeling routing algorithms [6] providing high performance

with limited look-up table sizes in the look-up table scheme. Additionally, while

maintaining flexibility, the number of instructions to be implemented are limited

www.manaraa.com

3

to a m inim al set so th a t the router can be easily implemented.

W hile the first part of the study focuses on flexible router architecture for

fixed an d /o r reconfigurable networks, the second part of the study deals with an im

portan t router function; the buffer management scheme. We present the design and

evaluation of a new buffer management scheme for a router called “self-compacting

buffers” .

The “self-compacting buffer” technique is an efficient way to build a dy

namically allocated m ultiqueue (DAMQ) buffer, which is one m em ber of a family

of buffer architectures defined by Tamir and Frazier [8] (Figure 1.1). In a FIFO

buffer, packets are routed through a single read and single write port in first-in,

first-out m anner (Figure 1.1(a)). W ith FIFO buffer, packets in an input port may

get blocked if they are not the first packet to be routed. The blocking problem can

be resolved by providing separate FIFO queues for each output port a t every input

port. Figure 1.1(b) shows one m ethod of this approach where 4 (4 by 1) crossbar

switches are used. This scheme is called statically allocated, fu lly connected (SAFC)

buffer. The problem with SAFC buffer is tha t it requires expensive hardware re

sources. Furtherm ore, the utilization of buffer space a t the input ports are not as

good as FIFO buffers. One approach to reduce the amount of hardware in SAFC

buffer is using ju st one (4 by 4) crossbar switch (Figure 1.1(c)). This scheme is

called statically allocated midti-queue (SAMQ) buffer. This approach eliminates

some of the hardware overhead of SAFC buffer but the buffer is still inefficiently

utilized because it is statically allocated. A better way of using the buffer is to dy

namically allocate buffer space in a SAMQ buffer. Figure 1.1(d) shows this scheme

which is called dynamically allocated multi-queue (DAMQ). It is reported th a t the

www.manaraa.com

4

in pu t
P o r t s

c r o s s b a r

bu f f er

O utp ut
P o r t s

(a) FIFO b u f f e r s

Input
Po r ts

4x1

b u f f e r

O u tp u t
P o r ts

(b) SAFC b u f f e r s

Input
P o r t s

b u f f e r

C r o ssb a r

Input
P o r t s

c r o s s b a r

b u f f e r

Output
P o r t s O utp u t

P o r t s

(c) SAMQ b u f f e r s (d) DAMQ b u f f e r s

Figure 1.1: Alternative Designs of Buffers

www.manaraa.com

5

M u l t i - P o r t e d

O u tpu t B u f f e r s

In p u t

P o r t s

O utpu t

P o r t s

Figure 1.2: Schematic Diagram of Ideal Buffer.

DAMQ buffer achieves the best performance among four buffer types [8]. Finally, it

is useful to consider the ideal buffer (Figure 1.2), which provides a useful reference

point for evaluating the other buffer types. In the ideal buffer, a m ulti-ported buffer

is associated with each output port. If multiple packets request a given output port

in the same cycle, the output port can accept all packets simultaneously. This im

plies th a t there is no blocking a t input ports, unlike the other switch organizations

mentioned above. Because of its high complexity, an ideal buffer would be very

difficult to implement in practice.

The “self-compacting buffer” technique described in this study applies to

packet-switched networks. There are three common flow control schemes namely:

store-and-forward, virtual cut-through, and wormhole. In store-and-forward net

works, complete packets are received and stored before they are transferred to the

next switch. Store-and-forward networks can support high bandwidth, but the

www.manaraa.com

6

network latency is proportional to the product of packet size and the num ber of

hops in the network [7]. The virtual cut-through flow control scheme [9] eliminates

this drawback by buffering entire packets only when they can not advance to the

next node. As soon as a desired output channel is available, a packet is forwarded

(cut-through) without waiting for complete reception of the whole packet. Like

store-and-forward switches, virtual cut-through switches require a m inimum buffer

size of one packet. The wormhole flow control scheme was introduced to elim inate

this requirem ent [10]. Wormhole routing is similar to the cut-through approach but

perm its packets to remain among multiple switches th a t are blocked.

This study considers two aspects of DAMQ buffer design. The first is a new

way to implement DAMQ buffers with virtual cut-through flow control. The second

is an investigation of DAMQ buffer performance for a broad class of multiprocessor

networks. We focus on DAMQ buffers because they offer the best performance

of the various switch architectures examined by Tamir and Frazier [8]; we focus

on v irtual cut-through because it is commonly used and offers better performance

than alternative flow control schemes. Although virtual cut-through requires larger

buffers than wormhole routing, current integrated circuit densities support large

buffers a t reasonable cost. We extend published performance studies in two ways.

F irst, we consider a much broader class of multiprocessor networks, including fc-ary

ra-cubes and Delta networks. Second, we introduce the single router simulation

technique, which perm its the performance of large networks to be accurately ap

proxim ated with much less simulation time.

The m ain contributions of this work are:

• The design of an efficient way to build DAMQ buffers using self-compacting

www.manaraa.com

7

buffer techniques. This design offers comparable performance to a previously

published design (the UCLA ComCobb chip [8]) at lower hardware cost.

• Extensive simulation results comparing the performance of a self-compacting

DAMQ buffer against ideal and FIFO buffer. The comparison extends previ

ous work by considering a much broader range of network topologies, including

several examples of k-ary n-cubes and delta networks.

• Introduction of the “single router” simulation method. This technique uses

the simulation of a single router element to approximate the performance of

an entire network. It drastically reduces simulation tim e and the complexity

of the simulator program itself, with little effect on accuracy. Single router

simulation is applicable to buffered networks in which the channel utilizations

and routing probabilities are identical (or almost identical) from router-to-

router.

The routing algorithm handler (mentioned in the first part of the study and

in [11, 12]) and the self-compacting buffer [13] are two im portant components that

manage the internal activity of the router. Besides those two router managing

entities, each router requires external interfacing to its neighboring router. The

in p u t/o u tp u t(l/0) port controllers receive/transm it the packets between routers.

Among several prim ary functions, the communication protocol is the basic function

of the I/O port controllers. The I/O port controllers are also responsible for carrying

signals th a t are required for a router that supports multiple switching techniques

[13]. In addition, the I/O port controller has the capability to support a variable

packet length and a variable number of header packets. The support of variable

www.manaraa.com

8

number of header packets is crucial when the routers are used in different sizes of

networks because the size of routing information in the header packet may vary.

In the third part of our study, we present an efficient architecture of an I/O port

controller. Specifically, the I/O port controller includes the following features:

• The ability to support variable packet lengths.

• The ability to support a variable number of header packets.

• Provide a signal propagation capability to support circuit and packet switch

ing.

• A communication protocol to receive and transmit packets.

• Cooperation with the routing algorithm handler and the packet flow controller

(DAMQ buffer) to initiate internal activities of the router.

1.1 Dissertation Outline

Chapter 2 provides survey work in areas related to routers. It describes

how routers are related to network topologies, routing algorithms and switching

techniques with examples of previously designed routers.

Chapter 3 describes a flexible oblivious router architecture. It explains the

difference between oblivious and adaptive routing. It introduces the primary com

ponents of a router with detailed descriptions. Then, it presents a general instruc

tion set required to execute routing algorithms and a control instruction set to

coordinate components of routers. And it describes internals of router architecture

in detail.

www.manaraa.com

9

Chapter 4 is devoted to a new organization for DAMQ with self-compacting

buffers and its evaluation. It provides a detailed description of how a self-

compacting buffer operates. It compares timing and hardware requirements to

existing designs. Then, it shows performance of DAMQ on A>ary n-cubes and delta

networks based on simulation results. In addition, it introduces a method of single

router simulation which predicts performance of k -ary ??-cubes and delta networks

with accuracy and a short run time.

Chapter 5 describes the I/O port controller architecture. It presents an ef

ficient communication protocol and ways of supporting multiple switching tech

niques, variable packet lengths and a variable number of header packets.

Finally, chapter 6 includes a summary and list of contributions of this study

as well as directions for future study.

www.manaraa.com

CHAPTER 2

LITERATURE SURVEY

Parallel processors are emerging as the promising technology to achieve high

computational power. A parallel system consists of nodes and an interconnection

network. The nodes are processing elements which carry out tasks such as number

crunching jobs, graphic processing, and vector processing. In order for the nodes

to cooperatively work on the jobs, they need to communicate with other nodes for

synchronization, exchanging partial results or system control [14, 15, 16]. The exact

reasons and types of communication may vary depending on the applications.

The interconnection network as shown in Figure 2.1 is the means by which

the nodes communicate with each other. The interconnection network is often

the critical component of a large parallel computer because performance of the

parallel system is very sensitive to network throughput and latency, and because

the network accounts for a large fraction of the cost [17]. Hence, developing high

performance interconnection networks has been the subject of extensive research.

A key component of the interconnection network is the router (also known

as a switching element). The router is equipped with all the intelligence that is

necessary to control network traffic. Thus, developing high performance intercon

nection networks directly relates to developing high performance routers. Some

of the m ajor issues that influence the design of the router include network topol-

10

www.manaraa.com

1 1

Ml M2 Mn

P2PI Pn

INTERCONNECTION NETWORK

Figure 2.1: Model of Concurrent Processing Systems

ogy, switching techniques, routing and flow control [18, 7]. The following sections

present survey results in the area of router design.

2.1 Network Topology

The network topology can be depicted by a graph in which nodes represent

switching points and edges represent communication links [19]. Different types of

topologies are summarized in Figure 2.2. The design of a router is closely related

to the network topology because the routing algorithm th a t has to be executed

by the router depends on the network topology. The following is a description of

topologies in a tightly coupled multiprocessor system.

www.manaraa.com

1 2

to p o lo g y

(re g u la r J (ir r e g u la r J

(s t a t i c] [d yn am ic]

(h yp ercu b e]

(o n e -
d im e n s io n a l]

(tw o -
d im e n s io n a l)

(th r e e -
d im e n s io n a l)

(. . .) [s i n g l e [m u lt i - [c r o s s b a r)
s t a g e] s t a g e]

I . . .)

[o n e - [tw o -
s id e d] s id e d)

Figure 2.2: Topology of Interconnection Networks

2.1.1 Static Interconnection Network

In the static interconnection network, communication links are passive and

cannot be reconfigured for direct connections to other nodes [20]. If every node is

connected to every other node, it is called a completely connected network. The

completely connected network offers a simple routing algorithm by eliminating in

termediate nodes and achieves high network performance. However, the cost of

constructing such a network is far greater than the benefits it can offer. Because of

this, the completely connected networks are used in multicomputer systems with

a relatively small number of nodes that require high throughput and low latency.

In terms of cost and performance, other network topologies, such as mesh and

hypercube network topologies, have received more attention. These networks pro

www.manaraa.com

13

vide high network bandwidth with low system cost and require a simple routing

algorithm.

Another network that belongs to the static network is ring topology. The

ring structure can be constructed by adding one m ore link to a linear structure

shown in Figure 2.3 (a). The ring structure (Figure 2.3(c)) reduces the m aximum

distance of the linear structure by half. It also adds more network fault tolerance

by providing an alternative path to reach a node. Another widely used static

network topology is a tree. It is used in an application such as the parallel search

algorithm [21]. The Binary Tree [22], Fat Tree [23], Flip Tree [24], H ypertree [25]

and KYKLOS networks [26] fall under tree topology. Besides the above mentioned

networks, there are other popular networks including Systolic Array, k-ary n-cube,

Chordal Ring, Cube-Connected-Cycle, etc.. Figure 2.3 shows several examples of

static interconnection networks.

2.1.2 D ynam ic Interconnection Network

The dynamic network can be constructed from one or more stages of in

terconnection networks th a t employ n x n switching elements. An example of a

single stage interconnection network is the shuffle-exchange network. A M ultistage

Interconnection Network (MIN) is by far the m ost widely used dynam ic network.

A MIN has many different topologies. The MIN topologies include the Omega

network [27], the D elta network [28], the Baseline network [29] and the BBN’s

Butterfly network [16]. Most MINs employ a 2 x 2 o r a 4 x 4 switching element

to route packets. The MIN can be either one-sided or two-sided. The one-sided

networks have input-output ports on the same side. T he two-sided MIN can be

www.manaraa.com

o-o-o-o-o

H M A ^
(d j (®) <f> (9)

Figure 2.3: Examples of Static Interconnection Networks: (a) Linear (b) Star (c)

Ring (d) Mesh (e) Hypercube (f) Binary Tree (g) Completely Connected

divided into three classes: blocking, rearrangeable, and non-blocking. In blocking

networks, simultaneous requests to the same connection result in conflict. Only one

request is granted at a time and the rest of them are either discarded or buffered.

A network is called rearrangeable nonblocking if it can perform all possible connec

tions between inputs and outputs by rearranging its existing connections so that a

connection path for a new input-output pair can always be established [19]. In the

non-blocking network, all possible connections can be made without blocking.

The important characteristics of the MIN is its flexibility and cost effective

communication links between processors. The MIN’s flexibility was exploited by

Lin and Wu on the baseline network. For example, the baseline network can be

configured into a ring structure if all processors, p,-, establish connections to pi+1.

Figure 2.4 shows the result of ring structure created from a 16 x 16 baseline network

14

www.manaraa.com

Figure 2.4: Configuration of a Ring Structure on Baseline Network

OO
OO

OO
OQ

QQ
QQ

QO
O

O

www.manaraa.com

16

along with physical paths at each switching elements. As it is shown, there are no

conflicts at the switching elements and it can effectively function as a ring structure.

In [30], Lin and Wu proposed algorithms that can configure the baseline into tree,

mesh, ring and/or a mixture of those with variable size networks by partitioning

networks.

2.2 Switching Techniques

The circuit switching and packet switching are two major switching tech

niques. In circuit switching, a physical path is actually established between a source

and a destination node before transmission of data. In packet switching, data is put

in a packet and routed through the interconnection network without establishing a

physical connection [20]. The circuit switching is suitable for transmission of bulk

data and the packet switching for short messages.

Packet switching can be further classified into three switching techniques

called store-and-forward, virtual cut-through and wormhole routing. Figure 2.5

(modified from [9]) shows data transmission of different switching techniques. The

store-and-forward switching technique was used in early computer networks. In the

store-and-forward, the complete packet is received at the intermediate node before it

is forwarded to the next node. This switching strategy was adopted in the research

prototype Cosmic Cube and several first-generation commercial multicomputers

including the iPSC-1, Ncube 1, Ametek 14 and FPS T-series [7].

The drawback of the store-and-forward switching was that the network la

tency is proportional to the packet length. To improve the network performance,

Kermani and Kleinrock proposed the virtual cut-through switching technique [9].

www.manaraa.com

17

node 1

n o d e 2

d e s t i n a t i o n

time

n e tw o r k d e la y

fa) c i r c u i t s w i t c h in g

n o d e 1

n o d e 2

d e s t i n a t i o n

netw ork d e la y

(b) w orm h ole r o u t in g

n od e 1

n od e 2

d e s t i n a t i o n

n etw o rk d e la y

(c) s t o r e - a n d - f o r w a r d s w i t c h in g

Figure 2.5: Operation of Three Different Switching Systems

www.manaraa.com

18

In virtual cut-through, the packets are not put into the buffer all the tim e. R ather,

the packets are forwarded immediately to the next node if it is possible, therefore

reducing the tim e wasted in waiting for the arrival of a complete packet. The pack

ets are buffered only if the next node is not capable of receiving packets or if the

required output channel is not available. The ComCobb chip developed a t UCLA

[31] and the H arts at the University of Michigan [32] adopted virtual cut-through

as their switching technique.

While virtual cut-through offers better performance than store-and-forward,

packets still have to be buffered if they cannot advance forward. Wormhole switch

ing adopts a new technique th a t eliminates the need for buffering. In wormhole

routing, a packet is broken down to a num ber of flits. This is the smallest block of

data for which flow control is m aintained. A flit is one or more of phits, which are

the size of the physical channel. Figure 2.6 (taken from [1]) shows the relationship

between the packet, flits and phits. The header, composed of one or more flits,

leads its way through the network and remaining flits follow in a pipelined fashion,

thus the nam e wormhole routing, as shown in Figure 2.7 (taken from [7]). W hen

the header is blocked in a router, the header and following flits are not stored into a

buffer. Instead, all flits remain in the network until the blocked condition is cleared.

Because of its unique switching technique, wormhole routing has advantages of: (1)

reducing the communication latency, compared with store-and-forward, and (2) re

quiring only a few flit buffers per channel instead of packet buffers a t each node like

store-and-forward and virtual cut-through require [33]. Numerous systems includ

ing Symult 2010, Ncube-2 and iWarp have adopted wormhole routing. By keeping

all flits in the network when the header is blocked, wormhole routing simplifies the

www.manaraa.com

19

p a c k e t

E l i t

p h i t p h i t p h i t

physical channel

Switch

Figure 2.6: Packet-Switching Terminology

buffer control and greatly reduces the overhead spent in buffer control. However,

channels may not be shared efficiently as the network traffic gets heavier and the

num ber of flits goes higher.

2.3 Flow Control

Buffers and channels are resources of a switch. Flow control refers to the

resource management policy of a switch which it controls (allocation/deallocation

of buffers and channels for packet reception/transmission). Since resources are

limited, it is possible that resource conflicts occur. The first instance of such a case

is when a packet cannot proceed because the receiving switch does not have any

www.manaraa.com

2 0

D e s t i n a t i o n

PROCESSORS

f l i t

Figure 2.7: Wormhole Routing

free buffer space. In this case, the packet can be thrown away, blocked in place,

buffered or rerouted depending on the resource management policy. The second

instance of a resource conflict is when two packets are ready to be transm itted

through the same output channel at the same time. In this case, there should be a

priority policy to resolve the conflict. Well known policies are round robin, first in

first out and fixed priority.

The architecture of the buffer and channel greatly influences flow control.

Tamir and Frazier investigated four different styles of buffer organization known as

First In First Out (FIFO), Statically Allocated Fully Connected (SAFC), Statically

Allocated Multi-Queue (SAMQ) and Dynamically Allocated Multi-Queue (DAMQ)

buffers [34]. Figure 1.1 in chapter 1 showed those four buffer organizations. In the

FIFO buffer, the first packet in the buffer has the top priority for connection to the

output port when it is available. The inefficiency of FIFO buffers is th a t the rest

of the packets in the buffer may not be transm itted even if their output ports are

ready, until they become the first packet in the buffer.

The SAFC buffer was designed to avoid such starvation. In the SAFC, the

www.manaraa.com

21

separate FIFO buffers are provided for each output port so that if the output port

is available, the packet from the associated buffer can be transm itted independent

of availability of other output ports and its priority against the priority of packets

in other FIFO buffers. Although the SAFC improves performance of the buffer,

it also has a few problems. First, it requires an n x n crossbar switch to support

n inpu t/ou tpu t ports. Second, n separate FIFO buffers are also required. Such

hardware overhead is not a practical use of chip area in VLSI implementations. In

addition, the utilization of buffer space in the SAFC is lower than that of the FIFO.

Another problem of supporting the SAFC buffer is the complexity of delivering

information. When a router is blocked, its input port has to notify the output

port of buffer filled information so that the output does not transfer more packets

until the input port of the neighboring router gets free buffer space. Having n

separate input FIFO buffers, the amount of information that has to be sent to

the neighboring output port is n times more with n x n routers. Furthermore,

the output port has to have knowledge of which neighboring input port the packet

is destined. Thus, it needs to pre-route the header packet to the input port for

determination of appropriate input port and receive the result back. The pre

routing adds more complexity to the design of the SAFC buffer.

The SAMQ buffer is similar to SAFC buffer except that it uses an n x n

crossbar switch instead of using n of (re x 1) crossbar switches as was the case with

the SAFC buffer. Thus, the SAMQ buffer reduces hardware complexity compared

to the SAFC buffer. However, the SAMQ buffer has the same problem th a t the

SAFC had for having the separate FIFO buffers including the pre-routing problem

because the SAMQ also uses separate FIFO buffers for each output port like the

www.manaraa.com

2 2

SAFC buffer. By using one n x n crossbar, the SAMQ has a lower rate at which

the input ports are read out than the SAFC buffer.

The DAMQ buffer also provides separate FIFO buffers for each output port.

However, unlike the SAFC and SAMQ buffers, it has physically one input port

but the input port is logically divided into multiple FIFO buffers. This was done

by using the linked list concept implemented by hardware with pointer registers.

In the DAMQ buffer, the size of each FIFO buffer in an input port is flexible.

The DAMQ eliminates the pre-routing problem of the SAFC and SAMQ buffer as

well as other problems which occur because of having multiple FIFO buffers with

physically one input port. The DAMQ buffer achieves higher buffer utilization rate

than the SAFC and the SAMQ buffers because of flexible FIFO buffer sizes. In the

SAFC and the SAMQ buffer, the size of each FIFO buffer within an input port is

(n/t) bytes for a buffer with t I/O ports and n total bytes per input port. If there is

packet traffic where the packet coming into an input port is destined to an output

port, only (n/t) bytes are utilized with the SAFC and the SAMQ buffers. Under

the same condition, the DAMQ buffer can utilize all n bytes for incoming packets

because the size of each FIFO buffer is flexible.

2.4 Virtual Channel

Dally developed the concept of virtual channel and presented virtual channel

flow control in [17]. This research was motivated by the fact that the through

put of interconnection networks is limited to a fraction (typically 20% - 50%) of

the network’s capacity because of coupled resource allocation [35]. W ith virtual

channels, one physical channel is divided into multiple virtual channels. Figure 2.8

www.manaraa.com

23

>hys ical

:hannel
s w i tch

v i r t u a l
channel 2

v i r t u a l
channe l 1

v i r t u a l
channe l 4

v i r t u a l
c h an n e l 1

v i r t u a l
channe l 3

v i r t u a l
channel 2

v i r t u a l
channel 3

v i r t u a l
channe l 4

r o u t e r r o u t e r

Figure 2.8: Four Virtual Channels Through a Physical Channel

www.manaraa.com

24

shows the four virtual channels sharing a physical channel. Virtual channels are

useful in three ways. First, by increasing the degree of connectivity in the network,

they facilitate the mapping onto a particular physical topology of an application in

which processes communicate according to another logical topology. Second, even

when the application and the architecture have the same topology, extra connec

tions may still be needed to route around congested or faulty nodes. Third, virtual

channels provide the ability to deliver a guaranteed communication bandwidth to

certain classes of packets [7]. For example, it is im portant that some bandwidth be

reserved to support system related functions, such as debugging, monitoring, and

system diagnosis.

2.5 Deadlock

Deadlock in the interconnection network occurs when no packets can advance

toward their destination because the buffers in the nodes are full [10]. Figure 2.9

shows an example of deadlock. In Figure 2.9, the buffers in all nodes are full and

no packets can advance toward their destinations. When the deadlock occurs in

the network, communication within the deadlocked nodes is not possible and some

mechanism to resolve the deadlock situation has to be applied. One way of resolving

the deadlock situation is by preemption. Preempted packets are either thrown away

or rerouted. Either way, preempted packets have to be reliably delivered to the

destination and this requires complex circuitry. Such extra hardware will increase

the network latency. Because of this, the resolving deadlock by preemption is not

a common practice. In general, deadlocks are avoided by the routing algorithm. In

this way, there is no need for extra hardware for resolving the deadlock situation.

www.manaraa.com

N2

C3
C2

CO Cl

NO

Figure 2.9: Deadlock in a 4-cycle

www.manaraa.com

26

2.6 Routing Algorithm

Routing determines an output channel (path) that leads to the destination of

the packet. A good routing algorithm should be easily implementable in hardware.

Routing algorithms can be classified as deterministic or adaptive. In deterministic

routing, routing decisions are made based only on the address of source and des

tination information. Deterministic routing is also known as oblivious routing. In

adaptive routing, routing decisions are made on information that includes address

of source and destination, network traffic load and faulty channels.

There are several well known deterministic routing algorithms. One of them

is digit routing used in the delta network. In digit routing, the routing decision is

made simply by looking at a portion of routing information in the packet. Most

networks that belong to Multistage Interconnection Networks use digit routing.

Figure 2.10 shows an example of digit routing in a baseline network.

Dimension-ordered routing is used in n-cube and mesh networks. The e-cube

routing is one branch of dimension-ordered routing and is used for the binary hy

percube [36]. In e-cube routing with N nodes, each node in the cube is represented

by n digits (rz = log2 N). Each digit corresponds to one output channel. When a

source node, s, needs to send a packet to a destination node, d, the routing tag, r,

is computed by r = s ® d where ® is XO R . Then, the packet is routed through

z-th output channel where z is the position of the first occurrence of one starting

from the left most position of r. If there is no such occurrence, the packet reached

its destination. After computing z, the z-th bit in r is zeroed before it gets for

warded. The e-cube routing is deadlock-free routing because it forces monotonic

www.manaraa.com

27

Routing in fo rm a t io n (r) o f omega Network = d e s t i n a t i o n

Thus, f o r so u rc e node o f 3 and d e s t i n a t i o n o f 6,

r o u t i n g in fo rm a t io n , r = 110

a node i n i - t h s t a g e u se s i - t h d i g i t from most s i g n i f i c a n t b i t o f r .

I f i - t h d i g i t o f r i s 0, then t h e p a ck e t i s ro u ted th rough upper l i n k ,

e l s e i t i s r o u t e d th rough lower l i n k .

0
1

2

3

4
5

110
1101 1106

7

Omega Network

Figure 2.10: An Example of Digit Roiiting

www.manaraa.com

28

given: s = 011
d = 101
r = 110

routing tag (x,y,z)
Oil 111110

010 112 .

101001

0 0 0 100

Figure 2.11: An Example of e-cube Routing in Hypercube

order on the dimensions traversed. A routing example on a hypercube is shown in

Figure 2.11.

Another branch of dimension-ordered routing is 2D mesh routing. In a 2D

mesh, each node is represented by its position (.r, y) in X and then the Y dimension.

A packet is routed in the X dimension first and then the Y dimension (alternatively

the Y dimension first and the X dimension next). For a given source node, s, and

a destination node, d, there are two approaches to represent the routing tag, r —

(x ,y). The first approach is to use the destination address directly as the routing

tag. In this case, the value x of the routing tag is compared to the value x of the

www.manaraa.com

29

current node. If they are equal, then the packet is routed to the Y dimension.

Otherwise, the packet is forwarded in the same direction from which it came. The

same is done in the Y direction until the y value of the routing tag matches the y

value of the current node, which is the destination node. In the second approach,

the routing tag carries relative distance from the source to the destination node of

X and Y dimension. In this case, the value x of the routing tag is examined to see

if it is equal to 0. If it is, the packet is routed to the Y dimension. Otherwise, the

value x is decremented by one and the packet is forwarded in the same direction.

The same process is repeated in the Y dimension until the value y becomes 0. Then,

the packet has arrived at the destination node. Like the e-cube routing, the 2D

mesh routing is also deadlock-free by keeping monotonic order in its routing.

The k-ary n-cube routing is a generalization of the e-cube routing algo

rithm . Dally and Seitz investigated deadlock-free routing algorithms, using virtual

channels, for k-ary n-cubes as well as the Cube-Connected-Cycle and the Shuffle-

Exchange Network [10]. Each node of a k-ary n-cube is identified by an n-digit

radix k number. Each channel between two nodes is divided into an upper and

lower virtual channel. The packet is routed on the high channel if the z’th digit of

the destination address is greater than the ith digit of the present node’s address.

Otherwise, the message is routed on the low channel. The k-ary n-cube with virtual

channel is a deadlock-free routing algorithm because the packet is routed in order

of descending subscripts.

There are numerous types of networks that belong to tree networks; thus,

the routing algorithm for a tree network is another im portant class of deterministic

routing algorithms. The tree networks include Binary Tree [22], Fat Tree [23], Flip

www.manaraa.com

30

Tree [24], Hypertree [25] and KYKLOS network [26]. Among those, the routing

algorithm for the Binary Tree is common to most of the tree networks. T he basic

concept of Binary Tree’s routing algorithm is simple. The packet is routed up to the

parent node if the destination node does not belong to the subtree of the present

node. If the destination node is one of the nodes in the subtree, the packet is routed

to the right child if it belongs to the right subtree of the present node. Otherwise,

the packet is routed to the left child. It can be formalized as:

Let i = (xp- 1 , ..., xjtfo) be a node th a t has a packet for node j = (y7_ i , ..., ?/it/o),

where

p - i

* = X
h=0

and similarly for j . Then, j is in the left (right) subtree of i if and only if the

following three conditions are all satisfied.

1) P < <h

2) ..., a^.To) = (yg_ i , ..., i/9_p),

3) Vg—p—i = 0 {Vg-p-1 = !)• [22]

The comparison of (arp_ i , ..., aria’o) and (yq- i , ..., yq- p) requires a shifter and a com

parator. Horowitz and Zorat proposed an address num bering scheme called the

even-odd num bering scheme th a t eliminates shifting of the address. Under the

even-odd scheme, the second condition above can be replaced with ..., .'Ci.x*o)

= {yq~ \ i ..., y\Vo)- Figure 2.12 shows an example of even-odd num bering scheme. In

[11], various routing algorithms including cube, mesh, ring, tree and MIN networks

are summarized.

www.manaraa.com

31

Figure 2.12: A Binary Tree with Even-odd Numbering

While most of the deterministic routing algorithms are simpler to implement

than adaptive routing algorithms, they do not have the capability of dealing with

dynamic conditions of a network such as faulty channels and/or traffic congestion.

Incorporating some degree of intelligence to deal with dynamic network conditions,

the adaptive routing algorithms can perform better in terms of throughput, latency

and reliability of packet delivery. However, the adaptive routing often requires

additional channels to avoid deadlock. Adaptive routing can be categorized into

minimal adaptive routing and non-minimal adaptive routing. In minimal adaptive

routing, packets are delivered to destinations through the shortest path. Supporting

minimal adaptive routing requires additional channels and the num ber of additional

channels increases rapidly as the size of the network grows larger [37]. In non-

minimal routing, packets are routed through longer paths if the shortest path is not

available. Non-minimal, deadlock-free, adaptive routing requires fewer additional

www.manaraa.com

32

channels than minimal adaptive routing, as shown in non-minimal adaptive routing

on the k-ary n-cube proposed by Dally and Akoi [38],

The determ inistic and adaptive routing algorithms discussed above support

a fixed network topology. However, it is possible th a t networks are reconfigured.

Currently available products th a t make it possible are In tel/C M U ’s iW arp cells

or the Transputer IMS T9000 family. In this case, the router should have the

capability to support multiple network topologies. In general, source routing and

table-lookup routing schemes are used.

In the source routing scheme, the sending node prepares a header th a t has

specific routing paths tha t lead to the destination. The header in the source routing

is lengthy because it has complete routing information within it. Such a.n approach

increases the network traffic by having longer messages. A more practical routing

scheme for reconfigurable networks is the use of table-lookup. The basic concept

of table-lookup routing is to have an entry in a table for each node address. When

a packet comes into a router, the packet’s destination address is used as an index

to find an entry in the table where the output channel num ber used is specified.

However, keeping an entry for each node increases the size of the table as the

num ber of nodes in the network increases and, for large numbers of nodes, the

cost of the table may not be practical. One m ethod th a t can keep the size of the

table small is to assign node addresses in such a way th a t a range of addresses

uses a particular output channel. As long as the ranges of each output channel

are m utually exclusive, this method will work and can reduce the table size. This

m ethod is called interval routing and Figure 2.13 shows an example of interval

labeling and routing. In the example of interval labeling, there are seven different

www.manaraa.com

33

d e s t i n a t i o n

a d d r e s s

I n t e r v a l

T a b le

l i n k
s l e e t e d

291 - 349 5

214 - 290 2

163 - 213 4

65 - 162 1

35 - 64 6

15 - 34 7

(o 3

s end p a c k e t t h r o u g h ch an n e l 4

(a) I n t e r v a l Labe l ing

(0 .1)

i n t e r v a l s f o r r o u t e r Is i n t e r v a l s f o r r o u t e r 2 :

node 1 node 3

node 4

node 0 node 5r o u t e r 1 r o u t e r 2

(b) I n t e r v a l Routing

Figure 2.13: An Example of Interval Labeling and Routing

www.manaraa.com

34

address ranges which span from address 0 to 349. There may be 350 nodes or

less, depending on the network topology and the labeling scheme used. In this

example, the destination address 174 falls into the range which is associated with

output channel number 4 and the packet is routed through output channel 4. In the

interval routing example, it shows how six nodes are labeled and how each router

makes up an address range for each output channel.

2.7 Crossbar Switch

The crossbar switch is a key component of a switching element. It provides

arbitrary connections between n input ports and n output ports. A multicomputer

of n processing nodes can be built with a single n x n crossbar switch. Theoretically,

throughput is maximized and latency is minimized if the entire network is one large

crossbar switch[39]. However, the complexity of hardware increases rapidly as the

number of processing nodes grows. In the early days, 2 x 2 or 4 x 4 crossbar

switches were the most widely implemented sizes. Recently, with advances in VLSI

technology, larger crossbar switches are becoming practical as can be seen in the

Inmos T9000, where 32 x 32 crossbar switches were used, and Choi [40] shows

a practical implementation of a 256 x 256 crossbar switch. The crossbar switch

is composed of buses that connect I/O ports and an arbiter. Figure 2.14 shows a

schematic diagram of a crossbar switch. An arbiter manages allocation/deallocation

of bus connections between I/O ports. Arbitration of crossbar switches is different

depending on the buffer management policy. Two basic arbitration schemes are

the n-user 1-server arbiter and the m -user 6-server arbiter. In a conventional n x

n FIFO switch, the arbiter receives n requests for use of one bus and grants only

www.manaraa.com

35

requoet

g ran t

n i n p u t

p o r t s

Arbiter
output
port
s t a tu s

c o n t r o l

l i n e

C r o s s b a r

swi t c h

n o u t p u t

p o r t s

Figure 2.14: Schematic Diagram of A Crossbar Switch

one request. This type of arbiter is called ra-user 1-server arb iter and has been

well studied [41]. The arbitration in a switch with a multi-queue buffer is more

complicated than a conventional n x n FIFO. In the switch where n input ports

are connected to m output ports through b buses, the input port has to acquire

two resources to be able to transm it: a bus connection from the input port to a

crossbar and an output port connection through the crossbar. Since each input

port requests one particular ou tpu t port and an output port can grant only one

request at a time, this can be implemented by an m user 1-server arbiter. All the

output ports for which there are requests have to contend for the available the b

buses. This arbitration can be done by an m-user 6-server arbiter as described in

[42].

www.manaraa.com

36

2.8 Sum m ary

In this survey chapter, m ajor issues that are related to routers were pre

sented. First, the network topology was surveyed. Among the network topologies,

the regular topology was discussed, which was divided into two types: static and

dynamic. The static network topology was classified according to its dimensions re

quired for the layout. The im portant static network topologies included were mesh,

hypercube and tree networks. The dynamic network topology had three classes:

single stage, MIN and crossbar. The MIN is the most widely used network because

of its flexibility and cost-effectiveness. Configuring a ring network based on the

baseline network was given as an example of MIN’s flexibility. Then, four types of

switching techniques were surveyed: circuit, store-and-forward, virtual cut-through

and wormhole. The circuit switching is suitable for bulk data transfer. The rest

of the techniques are more appropriate for small-size data transfers. The store-

and-forward technique was used in the early multicomputers. This technique had

long network latency because it receives a complete packet at each node before

it forwards the packet to the next node. The virtual cut-through technique was

introduced in early 1980. In virtual cut-through, a packet was allowed to go to the

next node before the whole packet was received. This technique greatly reduced

the network latency. Both the store-and-forward and virtual cut-through require

large buffer space for storing blocked packets. The wormhole routing technique

was introduced in late 1980 and requires only small amounts of buffers with simple

routing logic. The wormhole routing technique reduced network latency w ith low

hardware overhead through its simple design and control technique, and became

www.manaraa.com

37

one of the most popular routing techniques. Flow control schemes were surveyed

following the switching techniques. Well known FIFO buffer management schemes

have an advantage in terms of simplicity of hardware, but letting only the packet at

the top of the queue be transferred decreases the network bandwidth. To overcome

this difficulty, three other buffer management polices, namely SAFC, SAMQ and

DAMQ, were used. In these schemes, any packet in the buffer is given a chance

for transmission. Among those schemes, the DAMQ is known as the best policy in

term s of cost/perform ance trade-off. The virtual channel was surveyed next. The

virtual channel increased the overall performance of networks by dividing a phys

ical channel into multiple logical channels. In addition, the virtual channel was

necessary in most of Ar-ary n-cube networks for constructing deadlock-free routing

algorithms. Following the virtual channel, deadlock was briefly surveyed where

it was pointed out that deadlock is commonly avoided by the routing algorithm.

Routing was the next topic. Two classes of routing algorithms, determ inistic and

adaptive, were explained and examples of deterministic routing algorithms were

examined. Furthermore, routing algorithms for reconfigurable networks were pre

sented with an example of interval labeling and routing. Finally, issues around

the crossbar switch were surveyed as the last topic of this chapter. As a summary

of this chapter, Table 2.1 shows routers that were used in m ulticom puter systems

along with their key design parameters.

www.manaraa.com

38

Table 2.1: Routers and Types

System
Switching
Technique

Flow
Control

Virtual
Channel

Routing
Algorithm Ref

iPSC-1 store- and-for war d FIFO No determin. [43]
iPSC-2 circuit - No determin. [43]
Torus wormhole - Yes determin. [10]
Chaos wormhole - No adaptive [44]
Harts virt. cut-thro. FIFO No determin. [45]
Ncube-1 store-and-forward FIFO No determin. [7]
Ncube-2 wormhole - No determin. [7]
Cosmic Cube wormhole - No determin. [4]
Ametek 2010 wormhole - No determin. [46]
iWarp wormhole - No source [47]
J-Macliine wormhole - Yes determin. [48]
Comm Cobb virt. cut-thro. DAMQ No table [8]
BBN Butterfly st ore- and-for ward FIFO No determin. [16]
Touchs. Delta wormhole FIFO No • determin. [49]
Inmos T9000 wormhole - Yes interval [6]

www.manaraa.com

CHAPTER 3

FLEXIBLE OBLIVIOUS ROUTER ARCHITECTURE

In this chapter we present a router architecture that accommodates a family

of oblivious routing algorithms. The architecture is suitable for current technolo

gies and is intended for multiprocessor and massively parallel systems. In the

proposed architecture, we suggest that general purpose routers can be designed

that accommodate a variety of multiprocessor interconnection networks. In partic

ular, the routing algorithms of the interconnection structures that can be classified

as trees, cubes, meshes and multistage interconnection networks can be accommo

dated with a flexible, simple to implement architecture. Our investigation strongly

suggests that a common design can satisfy at least 40 network topologies with the

introduction of few, very simple to implement instructions. The overall conclu

sion is that general purpose cost effective routers can potentially be designed that

perform equally well as customized routing logic suggesting the possibility of a

common router for multiple interconnection networks. Furthermore, the proposed

architecture provides programming capabilities that allow other oblivious routing

algorithms not considered in our investigation to be accommodated.

The remainder of the discussion is organized as follows. In section two, the

background and the direction of our investigation is briefly explained. In section

three, the flexible router architecture is introduced with examples of routing pro

39

www.manaraa.com

40

grams using the proposed router architecture. Section four reports various program

characteristics. And, section five concludes the chapter with some remarks.

3.1 Routing Algorithms

In our investigation, we have considered oblivious routing algorithms for the

determination of a general purpose router architecture. An oblivious routing scheme

always produces the same communication path given the same source and desti

nation address. The architecture is developed around topologies that have been

extensively used in the design of parallel systems. The routing algorithms we have

considered have been divided into five families denoted as: tree, cube, mesh, mul

tistage interconnection networks and others (i.e. networks that did not fall into

any of preceding four types of network topologies). We considered for direct imple

mentation of the functions required by the routing algorithms of interconnection

networks classified as trees, 6 classified as cube network, 5 as mesh, 10 as multistage

interconnection networks and 8 that were not classified with the other network fam

ilies. The major consideration of the investigation was to have simple to implement

instructions and keep the number of instructions in the instruction set as small

as practicable. Furthermore, we were interested in providing an architecture that

allows parallelism in its implementation. For the 40 interconnection networks we

considered, when possible, we considered optimal routing algorithms. Consequently

we chose a set of instructions that will perform the algorithmic requirements. The

entire study is rather lengthy to report here, and the interested reader is referred

to [11] for a detailed discussion.

Identifying the algorithmic requirements is part of developing an architecture.

www.manaraa.com

41

This architecture must support other functions necessary for hand shaking with

other units. We support these capabilities with additional functions and protocols

described in detail later.

3.2 Flexible Router Architecture

Generally speaking, the router consists of three major parts: n-input con

trollers, an n-input by n-output switching mechanism and n-output controllers.

The input controller receives packets, performs a routing algorithm based on the

routing information in the packet and determines the output controller through

which packets are forwarded to the neighboring router. The n-input by n-output

switch connects n-input controllers with n-output controllers. The output controller

sends packets to the paired input controller of neighboring router. Figure 3.1 shows

the logical structure of a router.

For a router to be flexible, the router should be able to execute routing algo

rithms of multiple network topologies. Therefore, a flexible router should provide

means to implement all the required functions and/or instructions for various rout

ing algorithms. All routing algorithms are executed by the input controller. Thus,

the same n x n switch and output controllers can be used regardless of the input

controller’s flexibility. Developing a flexible router means providing capabilities for

the input controller to execute multiple routing algorithms.

The logical function of the input controller can be broken into three m ajor

blocks: input port, routing algorithm handler, and packet flow controller as shown

in Figure 3.2. The input port (incorporated in the port controller) is responsible for

carrying out communication protocol for the reception of packets from the output

www.manaraa.com

42

Input Output
Controllers Controllers

a o
a

Figure 3.1: Logical Structure of a Router

controller. The input port extracts the header portion of the packet and transfers

it to the routing algorithm handler. The input port also receives/transfers the data

bytes to the packet flow controller. Upon receiving header information, the routing

algorithm handler executes the routing program on the header information and

sends the result (output controller number) to both the n x n switch arbiter and

also to the packet flow controller. The packet flow controller stores the data bytes

sent from the input port into its buffer and waits until the routing algorithm handler

determines to which output controller the data bytes should be routed. Depending

on the method of assigning buffers of the packet flow controller to the data bytes,

there are three well known flow control schemes, namely store-and-forward, virtual

cut-through [9] and wormhole [7]. Once the packet flow controller is notified of

the output controller through which the data bytes should be forwarded, it waits

DD n x n
switch

www.manaraa.com

43

l o c a l
com m unica tion
c o n t r o l l e r

p o r t
c o n t r o l l e r

Routing
A lg o r i th m
H an d le r

Pack e t
Flow
C o n t r o l l e r

Figure 3.2: Logical Structure of an Input Controller

for the connection to the switch. When it receives the acknowledgment from the

arbiter of the n x n switch, it transm its the data bytes to the output controller.

A necessary condition for being a flexible router is to have a routing algorithm

handler that can execute multiple routing algorithms. In the next section, we

propose a novel routing algorithm handler architecture th a t provides support for

all the required instructions and manipulations of data to manage m ultiple routing

algorithms. The architecture of the port/packet flow controller is reported elsewhere

[13],[70]. W hen necessary, the functions and protocols of the port controller are

discussed.

3.2.1 R outing A lgorithm Handler A rchitecture

To directly support the algorithms, we have identified 12 simple to implement

general purpose instructions shown in Table 3.1 that satisfy the requirements. The

particular instructions required by the routing algorithm families of interconnection

networks are reported in Table 3.2. In this table, the OUT, CMP and BC instruc-

www.manaraa.com

44

ALU Instructions Format Operations
ADD R l, R2, R3 RR R3 = R l + R2
SUB R l, R2, R3 RR R3 = R l - R2
CMP R l, R2 RR Compare R2 to R l (sets cond. code)
AND R l, R2, R3 RR R3 = R l AND R2
XOR R l, R2, R3 RR R3 = R l XOR R2
PLO R l, R2 RR R2 = pos. of leading one bit in R l

shift instructions
SHR R l, R2, R3 RR R3 = Shift Right R l by (R2)
SHL R l, R2, R3 RR R3 = Shift Left R l by (R2)

data transfer inst.
MOV R l, R2 RR R l = R2

control instructions
BC address MI Branch on Condition
OUT channel no. I /R End of program

coommnunication inst.
MSG R1,R2,R3 RR Send message to local processor

R|) r e p r e s e n t s a r e g i s t e r a n d i t s n u m b e r .

(R 2) m e a n s th e c o n t e n t s of r e g i s t e r R2.

Table 3.1: General Instruction Set

tions are not listed because they are used in all networks. A detailed description of

all the algorithms, the types of interconnection networks and the routing programs

can be found in [11].

General Instruction Set

The general instruction set is used to execute routing algorithms. All

operands are either stored in the registers or are made available within the im m e

diate field of the instruction. Most of the arithm etic and logical instructions have

three operand fields to improve the register pressure and help reduce the num ber

www.manaraa.com

45

Network name Instructions required reference
Binary Tree AND PLO XOR [22]
Fat Tree AND PLO XOR [23]
Flip Tree AND PLO XOR MOV [24]
Bin. Tree with a Full Ring AND PLO XOR MOV SUB SHIFT ADD' [25]
Bin. Tree with a Half Ring AND PLO XOR SUB SHIFT [25]
Hierachical Mesh AND SUB ADD [52]
Hypertree AND PLO XOR ADD SHIFT SUB [25]
Diamond Network AND PLO XOR [53]
KYKLOS Structure AND MOV PLO SUB SHIFT XOR [26]
Tree of Meshes AND XOR PLO SUB [54]
Quad Tree AND XOR PLO ADD SHIFT [69]
Hypercube AND PLO SHIFT XOR [55]
Folded Hypercube AND PLO SHIFT ADD [66]
Banyan Hypercube AND XOR PLO [56]
Spanning Multiaccess Channel AND [57]
Base-m n-Cube AND SHIFT [58]
Cube-Connected Cycles PLO [59]
Mesh Array [59]
Torus Network AND SUB [2]
K-ary N-cube AND SUB [51]
Hexagonal Mesh AND SUB [45]
GNNM Hypercube AND SUB [60]
Omega Network AND SHIFT [28]
Delta Network AND SHIFT [28]
Baseline Network AND SHIFT [29]
Benes Network AND SHIFT [61]
Shuffle Exchange Network AND SHIFT XOR [10]
Augmented Data Manipulator Net AND SHIFT [62]
Generalized Cube Network AND SHIFT [28]
Extra Stage Network AND SHIFT [63]
Rectangulart SW Banyan Network AND SHIFT [64]
Gamma Network AND SHIFT [65]
Ring Network AND SUB [11]
Completely Conn. Net. [67]
Pyramid Network AND ADD [28]
Chordal Ring Network SHIFT [50]
Crossbar [68]
Cube-Conn Cycles w / virt. chan. AND SHIFT XOR MOV ADD [10]
K-ary n-cube /w virtual channel AND SHIFT XOR MOV ADD [10]
Shuffle Exchange Net. w/v.c. AND SHIFT XOR MOV ADD [10]

Table 3.2: Instructions Required for Interconnection Networks

www.manaraa.com

46

op code Rl R2 R3

31 24 23 16 15 e 7 0

RR torm at

op code ml m2 Rl not I

31 24 23 22 15 9 0

op code M not
used

I

31 24 23 20 19 9 0

Figure 3.3: Three Instruction Formats

of data transfers between registers. All instructions have equal length which is as

sumed to be 32 bits long. Each instruction has one of three formats: register to

register (RR), immediate or register (I/R), or immediate with mask (MI). In the

RR format, all operands are in registers. In the MI format, the I is the absolute

address and M is the mask value. In the I /R format, there are two mode bits, m l

and m2. The m l indicates if the R l is used or the I is used for the OUT instruction

only. The m2 is used for the instruction ECP and it indicates if it has the I as its

operand or no operand. Figure 3.3 shows the three instruction formats with the

assigned bit positions.

The description and some more information regarding the instructions can

be found in Table 3.1. The specific definition of the instructions is reported in [11].

The mnemonics and the functions of most instructions are self explanatory except

the instruction PLO (find Position of Leading One bit). The PLO instruction is

used frequently in the routing programs of the tree and cube networks. As the name

implies, it finds the position of leading one bit starting from the most significant

bit position down to the least significant position and leaves the result of positional

www.manaraa.com

47

value in the target register. As an example, the instruction:

PLO R1,R2 (R l = 00100000 and R l is an 8 bit register labeled from 0 to 7)

will have the result (R2 = 00000101) because the leading one bit was in the 5th

bit in R l.

A ddressing : All instructions in a program (except BC) imply a sequential access

of the program. The branching instruction is the only one that may use the address

of memory to determine the instruction to be executed. For the simplicity of the

architecture, there is only one type of addressing and that is absolute addressing.

The absolute address is the address assigned to a memory location. An absolute

address does not require any transformation of addresses when accessing memory.

In s tru c tio n s an d co n d itio n code: The condition code is set only by the CMP

(compare) instruction and tested by the BC (branch on condition) instruction.

Overflow conditions are ignored and not recorded anywhere. No other flag bits,

such as “result equal to zero”, are set as a result of arithmetic/logical, shift or the

PLO instructions.

C o n tro l In s tru c tio n S et

The instruction set we have described in the previous section can be used to

determine the behavior of the routing algorithm handler. No additional instructions

are required for the design of a router. The router can be initialized with proper

settings of its memory and states (to be discussed). The control instruction set is

introduced primarily to perform functions such as initialization, cooperative opera

tions with a local processor, potential operation mode that allows adaptive routing

www.manaraa.com

48

Instructions Format Operation
LPG R1,R2,R3 RR Load program
LSR R1,R2 RR Load status register
LR R1,R2 RR Load general register
ECP address I /R End of control program

Table 3.3: Control Instruction Set

which requires complex functions, etc.. We introduce the control instruction set to

increase the flexibility of the router architecture. The control instruction set com

prises 4 instructions as shown in Table 3.3. The Load ProG ram (LPG) instruction

initiates the transfer of the routing program from the local communication con

troller to the memory of the routing algorithm handler. LPG has three operands.

The first operand, (R l), contains the address of where the routing program is stored

in the local communication controller. The second operand, (R2), has the address

of where the routing program should be loaded in the routing algorithm handler.

The th ird operand, (R3), is the counter which specifies the size of the routing pro

gram to be loaded. The program loading operation is performed until the counter,

(R3), is equal to zero. The Load Status Register (LSR.) loads the new content

into the status register. The Load Register (LR) puts the new value into one of

the general registers of the routing algorithm handler. The End Control Program

(ECP) instruction term inates the control program and returns the privileged state

of the routing algorithm handler to the normal sta te and it may or m ay not set the

instruction address depending on the value of the m2 field in the instruction. The

description of how the control instruction is executed can be found in section 3.3.

www.manaraa.com

49

oca to c o n d i t io n coda In c o rru p t codo p c o to c tl p r o te c t s Q n o t in s t r u c t i o n A ddress

31 30 39 26 25 23 21 19 IB 15 14 10 9 0

Figure 3.4: Status Register Format

Status Register

The status register in the routing algorithm handler keeps the information

required for the execution of the active program and its implementation is always

required. It includes the instruction address, the condition code, the interrupt code,

the protects, execute bit(e) and the state of the routing algorithm handler. Figure

3.4 shows the bits assigned for each of the fields. The content of the status register

is set by the control instruction LSR.

S ta te s : There are two states in the routing algorithm handler: the normal state

and the privileged state. Each of these states has two modes, namely operating

mode and idle mode. The control instructions are executed in the privileged state

and the general instructions in the normal state. The interrupt is only executed

when the routing algorithm handler is in the idle mode. After the completion of

each routing program, the routing algorithm handler enters the idle mode. The

mode of the routing algorithm handler changes from the stopped mode to the op

erating mode when the input port transfers header information to the registers of

the routing algorithm handler and causes an end of the header packet interrupt.

The state of the routing algorithm handler changes from the normal state to the

privileged state when the local communication controller causes an execute control

program interrupt. The MSG instruction can also change from the normal to priv

www.manaraa.com

50

ileged state.

C o n d itio n C ode: The condition code is set by the result of the CMP (compare)

instruction and recorded in the condition code field in the status register. The

meanings of each bit in the field are:

condition code

0 operands are equal

1 first operand is low

2 first operand is high

3 undefined

I n te r r u p t C ode: There are five types of interrupts in the routing algorithm

handler. The interrupt code in the status register records types of interrupts as

follows:

0000 hardware failure

0001 input port

0010 local communication controller

0011 program check

0100 Instruction not implemented

P ro te c t F ie ld s: As was shown in the instruction format, a routing algorithm

handler can have up to 256 registers. In this architecture, we do not implement

all registers. To avoid unnecessary hardware, once the number of registers in the

routing algorithm handler for a specific technology is decided, the protect 1 field

is used to indicate the number of implemented registers. The protectl field has 3

bits and it can represent numbers ranging from 0 to 7. If a register number in the

instruction is given as r 7r 6...?'o, a value i of the protectl field represents that for

www.manaraa.com

51

all r j , where j > i, are zeros. If not, the program check in terrup t will occur. The

protect2 field is used in a similar way, it determines the actual addressing space

th a t a program can use and it sets the flag bit on if the address exceeds the address

range implemented.

E x e c u te B it (e) : Indicates if the execution occurs from the local memory of the

routing algorithm handler or an external device.

In s t r u c t io n A d d re ss : The instruction address field contains the address of the

next instruction for either control instructions or general instructions. W hen the

s ta te b it in the status register indicates th a t the routing algorithm handler is in

the normal state, the instruction address represents the next instruction address

for general instructions. Otherwise, it represents the next instruction address for

the control program.

A d d re ss G e n e ra tio n a n d D a ta F o rm a t: Execution of instructions by the rout

ing algorithm handler involves generating addresses of instructions and operands.

W hen an instruction is fetched from the location designated by the current status

register, the instruction address is increased equally after execution of each instruc

tion. For the branching instruction, the address of the next instruction is either

the address of the next instruction in the sequence or the address specified in the

I field in the instruction depending on the branching decision m ade in the branch

instruction. All instructions trea t data as only one type, two’s complement num

bers. In the two’s complement numbers, the m ost significant bit is used as the sign

bit indicator. The logical structure of the routing algorithm handler is shown in

Figure 3.5.

www.manaraa.com

52

\ ALU /

t o s w i t c h and
p a c k e t Elow
c o n t r o l l e r

r e g i s t e ritig.,__
s t a t u s
r e g i s t e r Memory

from in p u t
c o n t r o l l e r
and l o c a l
conununxcat io n
c o n t r o l l e r

Figure 3.5: Conceptual Structure of Routing Algorithm Handler

3 .2 .2 S to ra g e

R e g is te rs : There are up to 256 register's in total. For simplicity in program

writing, we consider two types of registers. The first type of registers is the general

registers. These registers store values or results of computations. The second type

of registers is the constant registers. The constant registers hold constant values

used in the routing program.

M e m o ry : The routing program is loaded into memory and executed from the

memory. The routing algorithm handler does not allow operands to be stored in

memory. The word length of the memory is 32 bits.

I n te r r u p ts

The in terrupt facility allows the routing algorithm handler to react to the

hardware failures in the router, monitor the program execution status, in itiate the

routing program stored in the memory, and also communicate with the local pro

www.manaraa.com

53

cessor through the local communication controller described later. We describe the

following types of interrupts.

I n te r r u p t fro m In p u t P o r t: When the input port receives a packet, it stores

the header part of the packet into the predetermined register(s) in the routing algo

rithm s handler. Then, it causes an interrupt to the routing algorithm handler tha t

begins executing the routing program on the newly arrived header information. If

the routing algorithm handler is in the normal state and the interrupt occurs, then

the routing program executes. Otherwise, the interrupt will remain pending until

the state changes to normal.

I n te r r u p t fro m L ocal C o m m u n ic a tio n C o n tro lle r: The local communica

tion controller communicates between the local processor and the input controllers.

The local processor sends data, the routing program and the control program to the

local communication controller. It also instructs the local communication controller

to notify the input controller th a t the control instructions should be executed. The

local communication controller does this operation by causing an in terrupt to the

input controller. When the interrupt occurs from the local communication con

troller, the input controller changes its state to the privileged state and executes

control instructions stored in the local communication controller.

I n te r r u p t fro m P ro g ra m : An interrupt of a program check occurs when the

register num ber exceeds the allowed number or an invalid instruction is detected.

The routing algorithm handler sends the program check message to the local pro

cessor and halts the program.

I n te r r u p t fro m H a rd w are : The bus error or hardware failure from any com

ponent can cause an interrupt. The routing algorithm handler reports the error to

www.manaraa.com

54

the local processor and halts the program.

3.2.3 The Local Com m unication Controller M echanism

In this section, we describe the concept and the conceptual structure of the

local communication controller. The facility need not be implemented if the con

trol instruction set is not considered for implementation. This facility can be either

implemented in hardware or in software. If the local communication controller is

implemented, it is responsible for the communication between the local processor

and the input controllers. The local processor sends programs and data to the input

controllers via the local communication controller and vice versa. The communica

tion between the local processor and the local communication controller is carried

out through messages. The interrupt mechanism is used for the communication

between the local processor and the input controllers. The local communication

controller reserves spaces for the status register, the general registers, the constant

registers, routing programs and control programs. Those spaces, except the control

instruction space, are replicas of storages in each of the input controllers. Figure

3.6 shows reserved spaces in the local communication controllers. Even though the

physical structure of the controller may not be necessary, its implementation may

be highly desirable for performance reasons.

Com m unication between local processor and local com m unication con

troller:

When the processor needs to send data or routing programs to one or all of the

input controllers, it first sends messages that contain data for the local commu

nication controller. The data/instructions are stored in the reserved spaces. Fur-

www.manaraa.com

55

s t a t u s
r e g i s t e r

g e n e r a l
r e g i s t e r s

r o u t i n g
program

r I I ITTT I I
i n p u t
c o n t r o l l e r
number

program

Figure 3.6: Reserved Spaces in Local Communication Controller

thermore, the input controller number and the control instructions are transferred

to the communication controller. If it is desired that the routing algorithm han

dler will execute the routing program from the communication controller, then the

status register reflects this correspondence. Otherwise, the control program has to

be loaded into the routing algorithm handler. The control program is loaded at

the beginning of the address space reserved for the control instructions. The last

address of the control program is used by the local communication controller to

modify the addressing of the routing program, if necessary, by a constant offset so

that no conflict of the addresses occurs.

Communication between local communication controller and input con

trollers:

In all cases, the local communication controller causes an interrupt to notify

the input controller, which receives data and/or the routing program, that the

data/routing program has arrived. The interrupted input controller then puts its

state to the privileged state and executes the control instructions stored in the

www.manaraa.com

56

local communication controller or executes the control instructions in its memory

depending on the status bit reflecting where the control instructions reside. As

indicated earlier, the starting address of the control instructions is always the be

ginning address space for both techniques. By executing control instructions, the

input controller may load data into the status register and general registers. The

routing programs are also loaded into their memory by control instructions.

3.3 T h e O p e ra tin g E n v iro n m en t

Once the type of interconnection is decided for a parallel system, the routing

program for the routing algorithm handler can be developed in either the host com

puter or the local processor. The executable program is downloaded to the routing

algorithm handler in each input controller.

R o u tin g A lg o rith m H an d le r In itia liza tio n and D ow nloading of D a ta : The

registers of the routing algorithm may hold information that is used repeatedly in

the routing program. An example of such information is the address of the source

node where the router is attached. This information is needed frequently in many

of the routing programs and it is known in advance, thus it does not need to be

computed in the routing program. The other data needed to be downloaded are

the content of the initial status registers in each the routing algorithm handlers.

The value for the protect fields will be assigned appropriately depending on the

number of registers to be supported. The initial instruction address for the routing

program should be determined and set accordingly. The control program for ini

tialization also has to be present in the host computer or the local processor. The

www.manaraa.com

57

control program needed for tlie initialization will be the sequence of LPG, LR, LSR

and ECP if it is assumed that the control instruction set is implemented. Once

all the necessary data are ready, the processor transfers the da ta to the local com

m unication controller, assumed for simplicity here to be im plemented in hardware.

After sending all the data, the processor sends another message th a t indicates the

end_of_data. Upon receiving the encLofldata message, the local communication con

troller causes an in terrupt to the routing algorithm handler in the input controller.

Then, the routing algorithm handler executes the control program loaded in the

local communication controller and initializes the status register, general registers,

and its memory. The last instruction in the control program is the ECP instruc

tion. It will put the state of the routing algorithm handler into the normal sta te

and stopped mode. And it waits for header information to begin operating. Mul

tiple input controllers using this example scheme can be initialized with the same

environment by changing the input controller num ber and repeating the process. A

parallel initialization is possible with proper hardware support and parallel loading

of the program to all input controllers.

E x e c u tio n o f th e R o u tin g P ro g ra m : Once the routing algorithm handler is

initialized, it will be in the normal s ta te and the stopped mode. The mode changes

from the stopped to operating sta te when the input port causes an in terrup t tha t

notifies the end of the header information transfer to the input controller. Then,

the routing algorithm handler executes the routing program on the new header in

formation. The last instruction in the routing program is the OUT instruction. It

sends the result of the routing program to the n x n switch as well as to the packet

flow controller. Then, it changes the operating mode to the stopped mode.

www.manaraa.com

58

010

001

000 100

Figure 3.7: Hypercube Network

3.4 Routing Program Exam ples

In this section, we show examples of routing programs written using the

routing algorithm handler instructions. In particular, the first example, describes

the operation of a routing algorithm entirely supported by the router. In the second

example, we demonstrate the flexibility of the proposed architecture by showing an

example which requires both the processor and the router, operating in synergy. In

the third example, we make an example of how to support reconfigurable topologies

using the Inmos [6] table lookup scheme, for the interval labeling method with the

proposed architecture.

E x a m p le 1: (R o u tin g in H y p e rc u b e) Figure 3.7 shows a hypercube network.

For the given pair of source, sn_1sn_2...50, and destination address, dn_idn_2...d0,

the routing tag, r„_1?*ra_2...r0, is computed as:

rn_irn_2...r0 ■— (s^—rsn_2...*5o -A.OR dri_ic/,l_2...c/o)

Then, using this routing tag, each router performs the following algorithm:

if (rn_1r n_2 ...r0 = all zeros) then forward the message to the local processor

else find the position, i, of the leading one bit in (rn_ irn_2...ro)

www.manaraa.com

59

set r,- = 0

send message through zth direction

The routing program developed in the routing algorithm handler that performs

the hypercube routing algorithm outlined above is shown below. R l, C l and C2

are general registers containing the routing tag(R l) and the constant values(Cl

and C2). The values of C l and C2 are set when the routing algorithm handler is

initialized by the local processor. The value of R l is loaded by the input port each

time the input port transfers new header information. The output channels are

numbered as following:

output channel in x direction = 1

output channel in y direction = 2

output channel in z direction = 3

output channel to the local processor = 4

H y p e rc u b e R o u tin g P ro g ra m

R l: Routing tag

C l: = 0

C2: = 1

1. CMP R1,C1
2. BC B’1000’, processor (branch if equal)
3. PLO Rl,R2
4. SHL C2,R2,R3
5. XOR R3.R1.R1
6. OUT R2
7. processor: OUT 4

www.manaraa.com

60

Register R l has the routing tag and the CMP instruction at line 1 compares Cl

to the routing tag. At line 2, the BC instruction tests if the routing tag contained

all zeros. If it is true, the program branches to the location labeled processor and

executes the OUT instruction where operand 4 indicates tha t the message should

be forwarded to the local processor. If the test result at line 2 is not true, the

program continues to search for the direction the message should go. The PLO

instruction at line 3 does this job by finding the position of the leading one bit in

R l and storing the result in R2. Thus, the value, i, of R2 represents the direction of

the next node. The SHL instruction at line 4 shifts register C 2 (= l), i bit positions

to the left and stores the result in R3. The value in R3 is used to zero out the z'th

bit of the routing tag and it is done by X O R m g R l and R3. Finally, the program

sends the result of the routing program by OUT R2.

E x a m p le 2: (S y n e rg e tic O p e ra tio n) As mentioned before, the instructions

provided for the routing algorithm handler were selected carefully after investigat

ing numerous network topologies. Yet, there are special cases where the routing

algorithm should be executed in the local processor. This case may occur for exam

ple if the routing algorithm requires instructions not provided within the routing

algorithm handler or if the size of the routing program is too big to be stored

in the memory of the routing algorithm handler. The routing algorithm handler

provides the MSG instruction through which it can delegate some or all of the

routing program to the local processor. The MSG instruction has three operands,

which are all registers. The first operand indicates the param eter to be sent to

the local processor. One example of the param eter is the address of the destina

tion node. The second and the third operands are pointers to the beginning and

www.manaraa.com

61

end of the sequence of registers that contain the address of memory locations in

the local processor where the desired routing program is stored. When the MSG

instruction is executed in the routing algorithm handler, it causes an interrupt to

the port controller. Then, the port controller builds a message where it contains

the param eter and the address of the memory location in the processor, along with

the input controller number which has the routing algorithm handler executing the

MSG instruction. After building the message, the port controller sends it to the

local processor. The local processor will execute the desired program for the rout

ing algorithm handler. Then, it sends the result to the port controller. The result

includes the input controller number, the new content of the status register and

the control program. Included in the status register is the new instruction address

which the routing algorithm handler will fetch to execute the next instruction when

control returns to it. The control program has two control instructions, LSR(load

status register) and ECP(end control program). At this point, the port controller

causes an interrupt to the routing algorithm handler which is in the input controller

specified in the message from the processor. The routing algorithm handler then

executes the control program stored in the port controller and has the new content

of the status register. The next instruction address of the routing algorithm handler

is the location specified in the instruction address. Figure 3.8 shows the sequence

of communications tha t occur by the MSG instruction.

E x a m p le 3: (R o u tin g o f 4x3 m esh w ith in te rv a l lab e lin g) The routing

algorithm with interval labeling belongs to the table-lookup routing scheme. It is

an efficient routing algorithm that reduces the table size [6, 71]. The architecture

we propose can also support this scheme. We show a routing program example for

www.manaraa.com

62

Rl has th e r o u tin g tag

R2 through R4 c o n ta in s
th e ad d ress o f
cnenory lo c a t io n
o f th e lo c a l p r o c e sso r

MSG R1,R2,R4

c h a n n e l_ l:

ch a n n e l_ 2 :

ch a n n e l_ 3 :

OUT 1

OUT

OUT 3

R ou ting A lgorith m Handler port c o n tro lle r

b u ild s che
m essage th a t e x e c u te s
c o n ta in s th e ^ t h e program
x>aram oter(Rl),

ftand th e
a d d ress o f
memory lo c a t io n
(R2-R4) o f
th e lo c a l
p r o c e sso r

b u i ld s th e
m essage
th a t ia9
th e new

s t o r e s th e c o n ten t
s t a t u s r e g i s t e r t o f s ta t u s
v a lu e and th e r e g is t e r
c o n tr o l program. and th e
Then, c a u se s an C on trol
in te r r u p t to program
th e r o u t in g
a lg o rith m
h an d ler

L ocal P ro cesso r

© th e n ext in s tr u c t io n a d d r e ss in t h e new s ta t u s r e g is t e r was ch an nel_2 .

Figure 3.8: Sequence of Communication Caused by the MSG Instruction

a 4x3 mesh interconnection network reported in [71] using the proposed routing

algorithm handler. As shown in Figure 3.9, each node of the 4x3 mesh 2D is

assigned a label In particular, the example routing program will show how

the routing is done for node (1,1). Let d be the label of the destination address

in a packet. Each routing table requires only four entries. One for each outgoing

channel. For example, the routing table at node (1,1) will contain the following

information. For d > 7, the packet will be routed using the +Y channel. For

5 < d < 7 , l < d < 3 , and d < 1, the packet will be routed through channels -X,

+X, and -Y, respectively. Following are the routing programs using the routing

algorithm handler. It is assumed that 1,2,3,4 and 5 represent channel numbers of

-X,+X,-Y,+Y and local processors respectively.

www.manaraa.com

63

0 ,2 0 . 2

(cj

Figure 3.9: The Labeling of a 4x3 Mesh: (a) Physical Network; (b) High-Channel

Network; (c) Low-Channel Network.

R l: Routing tag (d)

R2: Label of the current node

Cl

C2

C3

= 0

= 5

= 0

1. CMP R1,R2
2. BC B’1000’,processor
3. CMP R1,C3
4. BC BT010\+Y
5. CMP R1,C2
6. BC BT010’,-X
7. CMP R1,C1
8. BC BT100VY
9. OUT 2
10. +Y: OUT 4
11. -X: OUT 1
12.-Y: OUT 3
13. processor: OUT 5

(branch if equal)

(branch if greater than or equal)

(branch if greater than or equal)

(branch if less than or equal)

www.manaraa.com

64

3.5 Program Characteristics

In this section, we discuss some of the program characteristics for the various

routing programs we considered. This program has been reported elsewhere [11].

As they are shown in Figure 3.10, the CMP and the BC instructions are used in

all routing programs because every routing program has to check to see whether

or not the packets arrived at their final destination nodes. The OUT instruction is

also used in every routing program since it sends the result of the routing decision

m ade to the n x n switch as well as to the packet flow controller. Many routing

algorithms need operations on the selected fields of the given header information.

The AND instruction is used to mask out the unnecessary field of data. The

PLO instruction is used in the routing program of all tree networks and some of

the cube networks. The shift (SHR and SHL) instructions are used to align the

data for comparisons and used in the routing programs of most of the m ultistage

interconnection networks. The ADD and SUB instructions were used to increment

or decrement values. The length of routing programs for the tree networks, the

cube networks, the mesh networks, the m ultistage interconnection networks and

the networks not classified as preceding families are shown in Figure 3.11 through

3.15. The actual length of routing programs may vary depending on the size of the

network.

3.6 Conclusion

In this chapter, we have presented a router architecture th a t accommodates

a family of oblivious routing algorithms. The architecture is suitable for current

www.manaraa.com

Figure 3.10: Frequency of Instruction Usage in the 40 Networks Shown in Table

Figure 3.11: Routing Program Length for Tree Networks

www.manaraa.com

6 6

50

40

35

25

20

15

10

5

0

Figure 3.12: Routing Program Length for Cube Networks

Figure 3.13: Routing Program Length for Mesh Networks

www.manaraa.com

67

Figure 3.14: Routing Program Length for Multistage Interconnection Networks

1 . 1 1 - I I I

Figure 3.15: Routing Program Length for Other Networks

www.manaraa.com

68

technologies and it is intended for multiprocessor and massively parallel systems.

For this investigation, we studied the routing algorithms of over 40 interconnec

tion networks. We have identified the common functions and the instruction set

that satisfies the requirements for executing all the routing algorithms. Since the

architecture provides programming capabilities, it allows other oblivious routing

algorithms not considered in our investigation to be accommodated as well. Fur

thermore, the architecture can handle various types of header packet formats that

are necessary to support different sizes of the interconnection networks. In addition,

the fact that the architecture is programmable makes it easy to modify the routing

algorithm if there are any errors in the routing algorithm or a better algorithm is

developed later. Because the architecture supports a wide range of interconnection

networks, it can be mass-produced and has the potential of being an “off the shelf”

product. The overall conclusion is that general purpose cost effective routers can be

designed suggesting the possibility of a common router for multiple interconnection

networks.

www.manaraa.com

CHAPTER 4

DESIGN AN D EVALUATION OF A DAMQ MULTIPROCESSOR

NETW ORK ROUTER W ITH SELF-COMPACTING BUFFERS

A broad class of multiprocessor interconnection networks can be constructed

out of buffered routers that transfer packets from a set of inputs to a set of outputs.

This study describes a new approach to implementing a high performance router

using a technique called ’’self-compacting buffers” . This technique is efficient in

that the amount of hardware required to manage the buffers is relatively small;

it offers high performance since it is an implementation of a Dynamically Allo

cated Multi-Queue (DAMQ). Multi-queues exploit more channel bandwidth than

FIFO queues by allowing unblocked packets to bypass blocked packets. The first

part of this chapter provides a detailed description of the self-compacting buffer

architecture and compares it against a competing DAMQ buffer design. The self-

compacting buffer technique offers comparable performance requiring less hardware.

The second part presents extensive simulation results comparing the performance of

a self-compacting buffer against an ideal buffer. The comparison extends previous

work by considering a much broader range of network topologies, including several

examples of k-ary n-cubes and delta networks. In all cases, the self-compacting

buffer has performance comparable to an ideal buffer up to 80 % of the satura

tion bandwidth of the ideal buffer. In addition, simulation data show how the

69

www.manaraa.com

70

performance of an entire network can be quickly and accurately approximated by

simulating just a single router.

The remainder of the chapter is organized as follows. Section 2 presents the

design of a DAMQ buffer using the self-compacting bufFer technique. It contains a

comparison of the new design with another DAMQ design published by Tamil- and

Frazier [8]. The performance of DAMQ buffers in k-ary n-cubes and Delta networks

is examined in Section 3, assuming a uniform random workload and various packet

sizes. The final section summarizes the main conclusions of this work.

4.1 Im plem enting DAM Q Buffers with Self-Com pacting Buffers

Logically, the router can be viewed as being composed of the input port

controllers, the (n by n) switch and the output port controllers (Figure 4.1). The

input port controller receives incoming packets, performs the routing algorithm for

the packet and determines the appropriate output channel number. The (n by

n) switch establishes a path from n input controllers to n output controller, and

the output controller sends the packet to a neighboring node. Figure 4.2 shows

an example of a block diagram for an input port controller. The function of the

input port controller can be viewed from three perspectives. First, the input port

controller is responsible for receiving the packet and distributing the header part

of the packet to the routing algorithm handler and to the packet flow controller.

Second, determine the output channel number based on the header information

which is received from the input port controller. This task is carried out by the

routing algorithm handler. Third, allocate and deallocate the buffer space for

incoming and outgoing packets. In this section, we present a packet flow controller

www.manaraa.com

71

I n p u t
C o n t r o l l e r s

O u tp u t
C o n t r o l l e r s

- o

- □

- 0s w i t c h

(a)

i n p u t
p o r t

P a c k e t
Flow
C o n t r o l l e r

R o u t in g
A lg o r i t h m
H a n d le r

i n p u t c o n t r o l l e r

(b)

Figure 4,1: (a) Logical Blocks of a Router, (b) Logical Blocks of a Input Controller.

www.manaraa.com

l i g o r l t h n h t n d l a r

o u t pu t c h a n n e l n d

new h e a d e r r e q l a t e i

BUFFER

p o r t

Figure 4.2: Logical Structure of Packet Flow Controller

www.manaraa.com

73

architecture tha t implements the DAMQ buffer with a self-compacting buffer.

4.1.1 S e lf-C o m p ac tin g B uffers

The packet flow controller consists of a buffer, buffer controller, channel point

ers, case selector, a new header register, the output channel number register, a free

space register and a bypass buffer. A detailed description of the packet flow con

troller components follows.

B uffer M an a g e m e n t S chem e: For the proposed self compacting buffer scheme,

it is assumed that the buffer is divided dynamically into regions with every region

containing the data associated with a single output channel. This scheme supports

the DAMQ buffer management method introduced in [8]. The self compacting

buffer scheme has the following properties:

P ro p e r ty 1: If two channels are denoted as i, k where i < k , then the dynamically

allocated region for channel i and k always resides in a space addressed by addresses

Aj and A* respectively where A; < A a.-.

P ro p e r ty 2: There is no reserved space dedicated for a channel i. If no data

are currently requiring the output channel i, then there is no region reserved for

channel i.

P ro p e r ty 3: W ithin the space for each channel, the data are stored in a FIFO

manner so th a t the buffers preserve the order data arrived. When the new packet

for channel i has to be written into the buffer, the packet is inserted at the bottom

of the region for channel i. When the packet is read out, the packet is read from

the top of the region for channel i.

P ro p e r ty 4: For every output channel i, there is an integer number, denoting

www.manaraa.com

74

the number of entries present in the region (<5,- = 0 indicates that there is no space

reserved at this time for output channel i).

The properties of buffer organization suggests that when an insertion/deletion

in the buffer occurs via a write/read operation, there should be a mechanism to

access arbitrarily the region that is associated with a channel. In particular, if the

insertion of the packet requires space somewhere in the middle of the buffer, the

required space must be created by moving all the data which resides below the

insertion address. Furthermore, the reading from the top of the region for output

channel data may create empty spaces in the middle of the buffer. The data below

the read address needs to be shifted up to fill the empty spaces. In the section

to follow, we discuss in detail a high performance self compacting capability. The

buffer space maintained under the self compacting buffer scheme is shown in Figure

4.3.

B uffer O rg an iza tio n : The buffer consists of n storage locations. The addresses

of the storage locations are from 0 to n — 1. Each storage location can load and

store data. For a storage location i, the following actions can occur.

• shift up: storage location i can transfer its content to storage location i — 1,

• shift down: storage location i can push down its content to storage location

i + 1,

• no action: storage location holds data.

Each storage location has a tag and a data field associated with it as shown in

Figure 4.4. The tag field specifies the types of actions of a storage location. The

data field simply stores the data. The “u” (shifting up), “d” (shifting down) and

www.manaraa.com

75

channel p o in te r

ch . l 16
c h .2 31

ch. i 150

:h .n - l N-30

16 31 150 160 n-30 N

BUFFER

da ta t o r da ta for da ta t o r d a ta fo r
channel 0 channel 1 channel i channel n-1

Figure 4.3: Buffer Space

“e” (end of packet) are three bits in the tag field. When a request comes in to

read/w rite data from /into a region, each storage location takes an action according

to these three possible tags. Bit settings for shifting data up, down or no action are

also shown in Figure 4.4. The end of packet (e) bit is set by the buffer controller

(described later) and signifies that the data in the register are the last one of a

packet. All three bits in the tag are maintained by the buffer controller.

B uffer O p e ra tio n s an d C ase S e lec to r: The buffer can read and write simul

taneously. Depending on read, write or read/w rite operations(done in parallel), the

tag bits in all storage locations have to be determined accordingly. There are four

distinct cases by which the actions of each storage location in the buffer are deter

mined. The function of the case selector is to determine the type of data movement

45012658

www.manaraa.com

from
input
p o r t

t o
switch

0 nl dl a

dl

data

data.

5 l - u l <3 1■ft I

input
bus

n-1 u I d I f> I da ta

tag d a ta
f i e l d f i e l d

ou tpu t
bus

s h i f t d a t a down :

s h i f t d a ta up :

no a c t i o n :

Figure 4.4: Buffer Organization

www.manaraa.com

Figure 4.5: Bit Setting Example of Single Write

and feed this formation to the buffer controller. Four cases of data movement are

explained next.

case 1). S ingle W rite (In se rtio n): For a given address to write data in, all

storage locations whose addresses are less than the write address leave their data

untouched. The storage locations whose addresses are greater than or equal to the

write address shift their contents down to open a space in the buffer for incoming

data. An example of this case with the write address 2 is shown in Figure 4.5. In

Figure 4.5, data are written into storage location 2. The storage locations 0 and 1

do not take any action and tag bits are set to 0(=u) and 0(=d). Storage locations

2 through n — 1 are shifted down to create a space at address 2 for incoming data

and tag bits are set to 0(=u), l(= d).

case 2). S ingle R ea d (D ele tio n): All storage locations whose addresses are

www.manaraa.com

78

up (u)
b i t |

F

down <d)
b i t

1

0 l , \

1
, □ n

/1 n (n m i l

1
e

1

3 r , T o

1

ait-* |
1

1 1 , 1 . 1 . « . . . 1

, 1n-L L l 1 I) d a ta [

In p u t o u tp u t
b u s bus

Figure 4.6: Bit Setting Example of Single Read

less than the reading address leave their data as they are. The rest of the storage

locations shift the contents of their storage location up. An example of bit setting

for this case is shown in Figure 4.6.

case 3). S im u lta n e o u s R e a d a n d W rite (a d d re ss o f re a d < a d d re s s o f

w r i te): In this case, any storage location with addresses smaller than the read

address are not afFected. The storage locations with addresses which are greater

than the read address and less than or equal to the write address should shift their

contents upward. The rest of the storage locations take no action. An example of

read address at 2 and write address at 5 is shown in Figure 4.7. The bit setting for

this case will occur as follows. The down (d bit as shown in Figure 4.7 (a)) and

up (u bit as shown in Figure 4.7 (b)) bits are set according to its read and write

addresses as in case 1 and 2. Then, “u” and “d” bits are XORed and their results

www.manaraa.com

79

0 Inin

1 I n l n

Up I t
d a ta In

n l n

5 l _ Q l , , l l »

n-l U l I

input
bus

u d

1

I o I

3 1
Hnln in

. c c

5 I—Sl-0

n - l I nl

□

dala nut

data

dala ou

&J d°t<i

1 I n l n l r>

3 I 1 I 0

d a la in

i] _ o

n-l I 1 I 1 E l

1 I n l - . a .

r r

3 LL.
dntn In___

5 uu

n-l I 0 I - E l

■dato-nut

data

d a t a .

data out

data

input
bus

Figure 4.7: Bit Setting Example of Simultaneous Read/W rite (Read Address <

W rite Address)

www.manaraa.com

8 0

are left in both “u” and “d” bits (Figure 4.7 (c)). Then, all storage locations take

actions according to the “u” bits (Figure 4.7 (d)).

case 4). S im u ltan eo u s R ead an d W rite (ad d ress o f w rite < ad d re ss o f

re a d): In this case, only the storage locations whose addresses are greater than

or equal to the write address and less than the read address, shift their contents

down. Any other storage locations require no action. An example of a read address

at 5 and write address at 2 is shown in Figure 4.8. The storage locations 0 and 1

need no action. The storage locations 2 and 3 shift their contents down and the

storage location 5 through n — 1 shift their contents up for incoming and out going

data. The bit settings of case 4 takes place as following. The “d” bit is set by the

read address as in case 2 (Figure 4.8 (a.)). Also the “u” bit is set as in the case of

1 (Figure 4.8 (b)) except that the write address is decremented by one before it is

fed into the bit setting logic. After all bits are set, the “u” and “d” bits are XORed

and their results are left in both bits (Figure 4.S (c)). The storage locations take

action according to the “d” bit (Figure 4.8 (d)).

B uffer C o n tro lle r: The buffer controller manages the tag of all storage locations

in the buffer and it controls the read and write operations. It also generates the

encLoLread signal when it detects the EOP(End Of Packet) bit from the tag of

the storage location. When the last data byte is written into the buffer, it sets

the “e” bit in the tag of the storage location. The inputs of the buffer controller

are the case number generated from the case selector, read address and the write

address. Once the buffer controller receives all the inputs, it determines the correct

bit settings and sets the first three bits (“u”,“d” and “e”) in the tag for all storage

locations. The tags in all the storage locations are set in parallel. Supporting

www.manaraa.com

81

■d a ta o u l

n - l
In p u t
hue

o u tp u t

(a)

n - l

In p u t
b u s

output
b us

o I ol n

i l .nl .ji
- r in tn .in

a C a

3 \ 0 lie

4 LlJ A

nn

n - l [^1 I l ^ e T

n - l I - I 0

.data.

data

d a ta n u t

Z ~ l

data.,
data nut_

dala.

In p u t o u tp u t
b u s bus

(d)

Figure 4.8: Bit Setting Example of Simultaneous Read/W rite (Read Address >

Write Address)

www.manaraa.com

82

parallel tag bit settings can be done by associating a comparator to each of the

storage locations. Then, the address of the buffer and the read(write) address are

fed into the comparator to decide whether the shifting up or down bit (no action

if both bits are Os) should be set to 1 or 0. This scheme results in fast decision

making. However, it requires n comparators(with two inputs of log2n bits) for the

buffer of size re. We propose parallel bit settings that can be achieved using n — 1

bit comparators(with two inputs of 3 bits each) in log2n time.

Our proposed method uses comparators organized in a binary tree fashion

with one control signal(c), one tag selection signal(s) and one address bit as shown

in Figure 4.9. The basic idea of this method is to divide a buffer address into two

spaces and set the tag bit in one space to 0 and the tag bit in the other space to 1.

For given buffer addresses starting from 0 to re — 1, the interval of one space will

include from 0 to i and the interval of the other space from i + 1 to re — 1. As it

is shown in Figure 4.9 (a), each leaf of the tree represents an address space in the

buffer and it has a tag bit associated with it. The buffer address increases from

right to left in the tree. For a buffer with size ??., its address can be represented

by etp_ iap_2 ...<2o where p = log2n. The left most bit of the address is fed into the

comparator at the top of the tree and the second left most bit of the address to

the comparator at the second level of tree and so on. In addition to the address

bit, the tag bit selection signal (s) and the control signal (c) are used as inputs to

the comparator. The initial values for the signals “s” and “c” are 1 and 0. The

“s” signal carries bit setting information. It will be 0 or 1 when it reaches the leaf

node. The “c” signal is used as a control signal. Whenever the comparator at the

node receives the “c” signal with value 1, it means that the decision for the node

www.manaraa.com

83

r o a d (w r i te) a d d r e s s

a2 aO
ta g b i t s e l e c t i o n s i g n a l (s)

c o n t r o l s i g n a l (c)

t a g b i t s ;

b u f f e r a d d r e s s ; 7 6 5 4 3 2 1 0

o. b i t c o m p a ra to r

re a d (w r i te) a d d r e s s

ta g b i t s e l e c t i o n s ig n a l (s)

c o n t r o l s i g n a l (c)

t a g b i t s ;

7b u f f e r a d d r e s s

(b)

Figure 4.9: (a) Logical View of Binary Tree Method, (b) An Example of Setting

Tag Bits.

www.manaraa.com

84

and the subtree of the node are determined. Signal “s” is then propagated to its

children. The logic of the node is shown in Figure 4.10. An example of setting

tag bits is in Figure 4.9 (b). In this example, given the address 2(=010 in binary),

the tag bits in the buffer address greater than 2 are set to 0 and the rest of them

will be set to 1. All control signals and tag bit selection signals are shown in the

example. Figure 4.11 shows how address bits are fed into the comparator tree.

Address feeding logic is another tree whose number of nodes is equal to the number

of nodes in the bit setting controller. The function of each node in the address

feeding logic is the same. Each node sends the most significant bit of its content to

the bit setting controller. Then it rotates its content one position to the left, and

sends the content to its left and right child.

B y p ass B uffer: The bypass buffer is an intermediate storage between the input

port and the buffer. There are two cases where the bypass buffer is used.

Case 1). When the input port starts receiving data from the paired output port,

the data have to be held until the routing algorithm handler determines the output

channel number. The bypass buffer is used as intermediary storage so that the input

port can receive the incoming data while the routing algorithm handler executes

the routing algorithm. The size of the bypass buffer should be large enough to

hold incoming data while the routing algorithm handler makes the decision on the

output channel number and the buffer determines the write address.

Case 2). The bypass buffer is also used as the flit buffer [10] when the router

operates under the wormhole and the virtual cut-through scheme (to be discussed

later in detail).

C h a n n e l P o in te rs : There is a channel pointer for each of the output channel.

www.manaraa.com

85

s.'i + l■i+1

Figure 4.10: Logic at Each Node of Tree

www.manaraa.com

86

0.2

alal

aO aOaO aO

aO a2aO a la2aO alal

aOalaO a 2al

a2 aO

n - 1

n - 2 n -2
n - 3

n-1 n-2

Figure 4.11: Physical Organization of How Address Bits Are Passed to Compara

tors.

www.manaraa.com

87

A channel pointer for channel i points to the beginning address of data queued for

channel i. There is no channel pointer for channel 0 because it always starts from

address 0. The channel pointers are updated at the end of each read and/or write

operation. An example organization of the packet flow controller is shown in Figure

4.12.

Buffer Insertion and Deletion

As discussed earlier, when the new packet arrives at the input port, the

header information is sent to the routing algorithm handler. After the routing

algorithm handler determines the output channel number, it causes an interrupt

to the input port that the output channel number and the new header packet are

ready. Then, the input port initiates the write operation by hand shaking with the

buffer controller. The first data that go to the buffer are the length data. Then

the header data go next followed by the data. Details of the write operation are

described in table 4.1.

The read operation is initiated by the buffer controller when it receives the

acknowledgment from the switch that the requested connection is ready. The switch

also sends the channel number that is ready. Then, the buffer controller sends the

data to the switch until it detects the EOP bit. Details of the read operation are

described in table 4.2.

Timing

The ComCobb chip from UCLA is the first router that implemented the

DAMQ buffer [8]. The DAMQ scheme requires a complex buffer management

www.manaraa.com

R o u tin g A lg o rith m Handli

p o r t

sw itc h

>paaa b u f f e r
ch a n n e l
p o i n t e r

n d d r o f c t i lc h l d a ta

a d d r o f ch2

acjdr o f chnchn

b e g in

re a d
addro i

o f
re a d w r i t e

P a c k e t Flow C o n tro l lo r

Figure 4.12: An Example Organization of Packet Flow Controller

www.manaraa.com

89

Table 4.1: Write Operation

t l Input port sends write a signal to the buffer.
This signal is fed into the case selector.

t2 Case selector generates the case number and feeds this to the buffer controller.
t3 Shift controller sets tag bits for all storage locations (up, down and no action bit).

Write operation occurs.
If it was the last write, end of write signal is generated.

t4 Write address is updated.
The total free space is updated.
The channel pointer is updated.

Table 4.2: Read Operation

t l switch sends acknowledgment to the buffer.
This signal is fed into the case selector.

t2 Case selector generates the case number and feeds this to the buffer controller.
t3 Shift controller sets tag bits for all storage location (up, down and no action bit).

Read operation occurs.
If it was the last read, end of read signal is generated.

t4 If it was the last read, end of packet bit is set into the register pointed to
by the current read address.
The total free space is updated.
The channel pointer is updated.

www.manaraa.com

90

operation. The ComCobb chip used linked list concepts to dynamically allocate

the buffer spaces. In the self-compacting buffer, the buffer controller with the case

selector and the channel pointers are two key components for the buffer management

operation. To minimize the overhead of the buffer management operation, the

buffer management operation is overlapped with data transmission/reception. This

is done by performing the buffer management operation for (n + 1)th block of

data while the (n)th block of data is being received/transmitted. Thus, the time

(£) for the buffer management operation will not be seen if (5) is less than the

transmission/reception time of a block of data. This is shown in Figure 4.13. Both

the self-compacting buffer scheme and the ComCobb chip utilize the same concept

of overlapping the buffer management with data transmission/reception. They

achieve the same performance with respect to timing when their total buffer size

and block size are equal.

Complexity

In the ComCoBB chip, each block of the buffer is associated with a header

byte register, a length byte register and a pointer register. These registers are nec

essary to implement a linked list to support the DAMQ buffer management. The

ComCoBB chip has four channels and each channel can have a maximum of four

blocks. In the self-compacting buffer, each block of the buffer has a tag and a shifter.

There are (n + 1) channel pointers for n channels. Table 4.3 shows a comparison of

hardware complexity between the ComCobb chip and the self-compacting buffer.

From this table, we can derive the overhead function as the following:

www.manaraa.com

p o i n t e r
m a n i p u l a t i o n

p a c k e t

i n t o b u f f e r
d a t a
b l o c k 1

d a t a
b l o c k 2

d a t a
b l o c k 3

d a t a
b l o c k n

— ►-

t i m e

(a) P a c k e t R e c e p t i o n T im in g

p o i n t e r
m a n i p u l a t i o n

p a c k e t
t r a n s m i t t e d
f ro m b u f f e r

d a t a
b l o c k 1

d a t a
b l o c k 2

d a t a
b l o c k 3

d a t a
b l o c k n

t i m e

(b) P a c k e t T r a n s m i s s i o n T im in g

Figure 4.13: Timing Diagram of ComCoBB Chip

www.manaraa.com

92

Table 4.3: Hardware Complexity of ComCobb Chip and Self-compacting Buffer

ComCobb chip
Function Size Quantity
pointer ln(n) n
header 8 bits n
length 2 bits n
head ln(n) 5
tail ln(n) 5
data t bytes n
shifter 4 bits 2*n

Self-compacting Buffer
Function Size Quantity
tag 3 bits n
chan ptr ln(n) 5
data t bytes n
shifter ln(n) n-1

n = the number of blocks

t = the number of bits per block

overhead(GomCobb) = (M ») * (n + 10) + n * 18)
[n * t * 8)

and

o v e r h e a d (s e l f - compacting) = (<n(n) + " * 3)

The self-compacting buffer has significantly less overhead with respect to latches

than the ComCobb chip. Table 4.4 shows the calculation of overhead with several

different buffers and block sizes.

4.1.2 Variations

The packet flow controller described before is mainly responsible for buffer

management. It includes allocation and deallocation of buffer space for the incom

ing and outgoing data. The router that we propose supports the circuit switching

as well as packet switching. In particular, it supports store-and-forward, wormhole

www.manaraa.com

93

Table 4.4: An Example Overhead Calculation with 8 Bytes per Block.

buffer size ComCobb Self-comp.
2 37.5% 9.37%
4 39.1% 10.8%
8 38.7% 9.4%
16 38.3% 12.5%

and virtual cut-through for packet switching. In the following, the necessary signals

and operations that are required to support the multiple switching techniques are

described.

B locked Signal: The blocked signal is used in circuit switching. The input port

and the switch can generate the blocked signal. The input port generates the

blocked signal if the buffer is full for the incoming data. The switch generates the

blocked signal if the requested output channel is not available. Once the signal is

generated, it is back propagated through the reverse order the signal has traveled

and goes to the originator of the signal.

P a th C lea red Signal: The path cleared signal is used in circuit switching. Circuit

switching requires the complete path from the source node to the destination node

be reserved before it sends out data. The path cleared signal is generated by the

destined router if all the intermediate paths are available.

S u p p o rtin g C ircu it Sw itching: The circuit switching does not require any buffer

because its complete paths from the source node to the destination node are re

served before the transmission of data. When operating under circuit switching,

there are two phases to transfer packets. The first phase is the “path set up”

www.manaraa.com

94

phase. In this phase, all input ports that are included in the required paths will

receive “path set up” packets that have the destination address and that are the

sole content of the packet. If any input port is busy at the time of receiving the

“path set up” packet, the input port raises the blocked signal. If the input port is

idle, it forwards the packet to the next router. The state of the input port at this

time will change to busy state. When the input port forwards the packet through

an output channel, the output channel is dedicated to the input port until one of

two cases happen. The first case is that, the complete path cannot be set up. In

this case, the blocked signal will be back propagated from the busy router and the

input port releases the dedicated output channel. The second case is when the

path is not needed between the source and the destination node. The second phase

is the packet transfer phase. In this phase, the input already has the dedicated

output channel. Thus, when the packet arrives at the input port, it simply relays

the packet through the dedicated output channel. When the usage of the paths are

not needed, the path cleared signal is sent from the destination node and all input

ports that were part of the path go back to idle mode and release the dedicated

output channel.

S u p p o rtin g S to re-and -fo rw ard : In the store-and-forward, the request for the

output channel connection is sent by the buffer controller in two cases. The first

case is at the end of reception of a packet if the packet is the first one in the buffer.

The second case is at the end of transmission of a packet and if there are remaining

packets in the queue from the same channel. When the routing algorithm handler

determines the output channel number, it will inform it to the input port. Then,

the input port will initiate hand shaking with the buffer controller to start writing

www.manaraa.com

95

data into the buffer. The first data will be the length data [70]. The second data

word is taken out of the new header register which contains new header information

prepared by the routing algorithm handler. Transmitting data to the switch can

occur in parallel with the reception of the data into the buffer.

Supporting Wormhole: The wormhole routing is similar to the circuit switching

in that once the input port gets an output channel, it does not release the output

channel until the completion of the packet transfer. But it does not preallocate all

paths needed to forward the packet as in the circuit switching. Rather, it does that

as it progresses along the path that leads to the destination. Even if the front of the

packet is blocked, input ports do not release the output port channel but wait until

the front packet can advance. In the wormhole scheme, there is only one packet in

the buffer at a time. The input port writes the data into the bypass buffer while

waiting for the connection ready acknowledgment from the switch. If it receives

the acknowledgment signal from the switch, it starts transm itting the data directly

from the bypass buffer to the output port. The read and write operation may over

lap in the wormhole scheme as well. When the input port is ready to forward a

packet again after being blocked, it does not have to re-request the connection of

the output channel because it never released it. Thus, in wormhole routing, it can

save time that is required for arbitration of the output channel. But if the input

ports are being blocked for long periods of time, it wastes output channel resources.

Virtual Cut-through: In the virtual cut-through, all operations are identical to

the wormhole scheme until the packet can not advance to the next switch. In this

case, the incoming data are stored into the buffer from the bypass buffer and trans

m itted later. The input port also releases the connection back to the switch so

www.manaraa.com

96

that other input ports can use it if possible. After the blocked condition is cleared,

the buffer controller has to request the connection again for the data because the

connection to the switch was released when buffered. Figures 4.14 to 4.16 show the

control flow of the store-and-forward, the wormhole and the virtual cut-through

schemes.

4.2 Performance of DAMQ Buffers in k-ary n-cubes and D elta N et

works

This section compares the performance of DAMQ, FIFO and ideal buffers.

The data show how closely a realistic buffer design (the DAMQ buffer) approximates

an ideal buffer, which is much more expensive to implement. The data expand the

data reported by Tamir and Frazir [8] by considering a broader class of network

topologies, and multiple packet sizes. Tamir and Frazir’s results considered only

a 64 node Omega network and single flit packets. This section reports results for

several examples of k-ary n-cubes and Delta networks for multiple, fixed packet

sizes. In addition to this, this section provides additional data on random packet

sizes.

This section also presents a useful technique for making fast, accurate ap

proximations of network performance using results from simulations of a single

router.

4.2.1 M ethodology

The principle metric for comparing the different router implementations is the

average latency experienced by a packet traveling through a network constructed

www.manaraa.com

97

handshake
from inpu t

r»ort ?

yes

re c e i v e he ade r
from new header
r e g i s t e r

r e c e i v e
l e n g th

r e c e i v e
a d a ta

p u t EOP mark on
r e g i s t e r t h a t

-has l a s t d a ta

i s packe t
f i r s t in
channel ?

y e s

r e q u e s t
o u tp u t
channel

(a)

ye s

i s t h i s
l a s t d a t a

yes

acknowdge-
ment from
s w i tch ? y

lend h e ad e r

send l e n g th
d a t a

g e n e r a t e
end_of_read
s io n a l

send d a t a

g e n e r a t e end_
of_handshakesianal

(b)

Figure 4.14: Flow of Buffer Controller for Store-and-forward. (a) W riting to Buffer

(b) Reading from Buffer.

www.manaraa.com

98

acknowdge-
ment Erotn
sw itc h ? A

y es

channel
blocked

y e s

c h a n n e l
b lock ed

g e n e r a te
end_o£_read
eictnal

g e n e r a te e n d .
of_handahakeBlanal

send len g th

send header Erom
new heador
r e g is t e r

send d a ta

channel
blocked

channel
blocked

y e schannel
b locked

y e s

header Erom
I n p u t p o r t

put EOP mark on
r e g is t e r th a t
hag 1 apt da t~a

a d ata

Figure 4.15: Flow of Buffer Controller for Wormhole, (a) Writing to Buffer (b)

Reading from Buffer

www.manaraa.com

99

p u t EOP m ark on
r e g i s t e r t h a t
hfl« la st data

is packet

<a>

g e n e r a t e end_
o f_ h a n d sh a k e

-alanal

■end le n g th

Figure 4.16: Flow of Buffer Controller for Virtual Cut-through, (a) Writing to

Buffer, (b) Reading from Buffer.

www.manaraa.com

1 0 0

from a collection of such routers connected in some topology. The topologies con

sidered are specific examples of ft-ary ?r-cubes and D elta networks.

The da ta reported in this section come from three sources:

1. Published Data: All of the da ta for ideal buffers come from published sim ula

tion results used to validate various analytic models [72, 73]. A small portion

of the DAMQ and FIFO results comes from Tamir and Frazier [8] (the da ta

for single-flit packets on a 64 node Omega network).

2. Simulations o f Complete Interconnection Networks: These were obtained from

our network sim ulator instrum ented to collect statistics such as channel u ti

lization, latency and routing distribution of a DAMQ buffer.

3. Simulations o f Single Switches: For k-ary ?r-cubes and D elta networks, each

router in the network has the same set of routing probabilities from inputs

to outputs, and the same set of channel utilizations on the input and ou tpu t

ports. This sym m etry can be exploited to approxim ate the performance of a

complete network with simulation results for a single router. This approxi

m ation has been used in several analytic models of k-ary n-cubes [72, 73] and

D elta networks [29], assuming ideal buffers. The d a ta presented here apply

to DAMQ buffers. We present data for single router simulations to show th a t

this approximation compares very favorably w ith the d a ta from full network

simulations.

All simulations were m ade with the following assumptions:

1. Infinite buffers. This simplified the simulation tremendously, and reflects the

www.manaraa.com

1 0 1

fact that most routers are designed with a sufficient number of buffers that

blocking is negligible.

2. Packet destinations are uniformly distributed across all processors (but not

including the source processor).

3. Fixed packet size.

4. Packet interarrival times are geometrically distributed with param eter p (ie.

the probability that the next packet arrive after n dead cycles is p). This

implies an average arrival rate of p.

5. Infinite buffers at the source and destination “processors”.

6. Virtual cut-through flow control.

7. Conflicts within a router were resolved as follows. W ithin a router, it is

possible that multiple packets destined for the same output port can have

conflicts. These were resolved with an arbitration scheme that granted the

output port to the input with the longest blocking time. The DAMQ buffer

also requires arbitration among packets within a channel that are ready to be

sent at the same time. These were resolved in the same way: packets that

have been blocked the longest have the highest priority.

8. The latency of a packet transmission was measured from the tim e the first

flit of the packet is injected into a network router to the tim e that the last

flit leaves the last router in its path.

www.manaraa.com

1 0 2

9. Steady-state was assumed to be reached by simulating a large number of

network cycles. Several experiments verified that increasing the number of

simulated cycles had negligible impact on the results.

4 .2 .2 P e rfo rm an ce of k-a ry n -cubes C o n s tru c te d w ith D A M Q B uffers

A &-ary n-cube is a network with n dimensions having k nodes in each di

mension. The k-ary n-cube network has the same set of channel utilization on

the input and output ports. Figure 4.17 shows an example of routing probability

of each input and output channel for a 1024 node 3D Torus network. The k-ary

n-cube network uses the dimension ordered routing on a virtual channel developed

by Dally [10]. In the dimension ordered routing, the routing is performed in order

of decreasing dimension (k — 1, k — 2, ...1,0) by comparing the k digits of the radix

k addresses of the packet destination and router. A packet with destination d at

router i is sent along the highest dimension at which d and i differ; when d = i,

the packet has arrived at its destination. To prevent deadlock, the buffers for each

input at a router are divided into channels to prevent cyclic dependencies among

buffers at different routers. Virtual channel 0 is taken when d < and 1 otherwise.

In our simulation, the unidirectional channels were assumed for simplicity.

A router in a /c-ary n-cube network requires n + 1 channels; n channels for

n dimensions, and one channel for a local processor. Under a uniform workload

and dimension ordered routing on virtual channels, each router in a k-ary n-cube

network has the following properties:

1. The channel utilization of the n routing channels is given by:

www.manaraa.com

103

Y

Z

CPU

Buffer Queues Channel Queues

8%0.2%

20*

90'

T%

Y

Z

CPU

Figure 4.17: Routing Probability Distribution for a Unidirectional 3-D Torus Net

work (k = 10 n = 3).

www.manaraa.com

104

m Bnkd _ ,p = ----------- = m,Bkd
n

where p is channel utilization, m is message generation rate, n is network

dimension, B is message size, kd is the average distance a message m ust travel

in each dimension and is given by kd = (k — l) /2 for end-around connection

and kd = (k — (l / k)) / 3 for no end-around connection [72].

2. The channel utilization of the input and channels of the local processor is m.

3. The routing probabilities of the n routing channels are:

For given input channel i and output channel j , the routing probability, Rj j ,

is:

Ri,j = {k - 2)/(??,) for i = j

and

R iJ = (2) / (k) * k - ^ for i = n \

and

R i tj = (2)/(*) *

for the rest of channels.

4. The routing probabilities for the input port from the local processor are:

For an output channel

R itj = for j = n

www.manaraa.com

105

and

Ri j = AT(j_1) * (1 - l / k)

for the rest of the channels.

A simulation run of a single router provides the the average waiting time, w , per

packet. Then, the average latency of a message, T, through the network can be

calculated by:

T = (1 + wB)nkd + B.

for networks that use virtual cut-through. Here, (1 + ioB) represents the delay at

a router and multiplying the average distance^?.^) to it, we can get the average

latency for a unit packet. Since, we are assuming that the virtual cut-through is

used, B is added to get the average latency for a message.

Fixed, Unit-Length Packets

Figures 4.18 to 4.23 show plots of average latency versus channel utilization

for the following &-ary ?r-cubes, assuming fixed, unit-length packets:

1. n. = 2, k = 8,10 (These are two dimensional meshes with end-around connec

tions.)

2. n = 3, k = 6,8 (These are three dimensional meshes with end-around con

nections.)

3. n = 7,8, k = 2 (These are hypercubes.)

www.manaraa.com

106

FIFO
50

F u l l S c a le S im u la t io n
ta

S in g le S w itc h S im u la t io n
45& I d e a l S w itc h

&c
* 403

35

30

25

20

15

0.0 0 . 2 0.5 0 . 6 1 . 00.1 0.3 0.7 0 . 8 0.9

Figure 4.18: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 3-D Torus (k = 6 n — 3).

Each plot compares ideal, FIFO and DAMQ buffers. Single router DAMQ

results are also shown to validate the single router approximation. The latency data

for ideal buffers were taken from [72] and [73]. Channel utilization was measured at

the class of channel with the highest amount of traffic (the “bottleneck” channels).

For the mesh cases this is any of the n routing channels. For the hypercubes these

are the “processor” input channels.

www.manaraa.com

107

FIFO
50 F u l l S c a le S im u la t io n

cr>

oS'
S in g le S w itc h S im u la t io n

I d e a l S w itch

35

30

25

20

15

0 . 0 0 . 1 0.40 . 2 0.3 0.5 0 . 6 0.7 0.8 1 . 0

C hannel U t i l i s a t i o n

Figure 4.19: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 3-D Torus (k = 8 n = 3).

www.manaraa.com

108

F u ll S c a le S im u la tio n

S in g le S w itch S im u la t io n

I d e a l Sw itch

0 . 0 0.1 0 . 2 0.3 0.4 0.5 0 . 6 0.7 0.9 1 . 00.6

M essage G en era tio n Rate

Figure 4.20: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for Hypercube (k = 2 n = 8).

www.manaraa.com

109

Pull Scale Simulation

Single Switch Simulation

Ideal Switch

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0.6 0 . 90 . 7 0.8 1. 0

Message Generation Rate

Figure 4.21: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer M anagement Scheme for Hypercube (k = 2 n = 7).

www.manaraa.com

1 1 0

50

4J
U&

FIFO

F u l l S c a le S im u la t io n

S i n g le S w itc h S im u la t io n

I d e a l S w itc h35

30

25

20

15

10

0 . 0 0 . 1 0 . 2 0.3 0.5 0 . 6 1 . 00.7 0.8 0.9

C h annel U t i l i z a t i o n

Figure 4.22: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 2-D Mesh (k = 10 = 2).

www.manaraa.com

I l l

50

45
FIFO

F u ll Scale Sim ulation40

S i n g le S w itc h S im u la t io n

I d e a l S w itc h35

30

25

20

15

10

0 . 0 0 . 1 0.30.2 0.4 0.5 0 . 6 0.7 0.8 0.9 1 . 0

Figure 4.23: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer M anagement Scheme for 2-D Mesh (k = 8 n = 2).

www.manaraa.com

1 1 2

As expected, DAMQ buffers provide significant improvement over FIFO

buffers, and do not perform quite as well as ideal buffers. The single router results

provide a very good approximation of full-network performance. Furthermore, the

single router simulations took 10 to 100 times less simulation tim e than the full

network simulations. Although the differences are small, the single router model

consistently undei’estimates the latency for high channel utilization. The reason for

this was described by Agarwal [72] for a similar effect encountered when extending

single router analytic results: in k-ary rc-cubes using the dimension ordered routing

algorithm, packets suffer higher-than-average delays in the higher dimension and

this fact was verified by simulation [72].

F ixed, M ulti-flit Packets

Figures 4.24 to 4.26 shows the impact of increasing the packet size to 2, 4 and

8 flits for an 8-ary 2-cube. The trends are similar to those observed for a packet

size of one. The absolute latency values, however, increase markedly as the packet

size is increased; the increase is roughly proportional to the increase in packet size.

This corresponds to the fact that whenever a packet m ust wait in a queue, the wait

tim e is proportional to the size of the packets in front of it. As before, single router

simulation provides a very good approximation.

4.2.3 Performance of D elta Networks Constructed w ith DAM Q Buffers

A Delta network is defined as an an-hy-bn switching network with n stages

consisting of «-by-6 crossbar switches. In the Delta network digit routing is used.

In digit routing, a digit with a routing tag at each stage determines which output

www.manaraa.com

113

u&
>.u
c4>

90

3 Full Scale Simulation

Single Switch Simulation

Ideal Switch70

60

50

30

0 .0 0 .1 0 . 2 0.3 0.4 0.5 0 . 6 0.7 1.00.6

Figure 4.24: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 2D Mesh (k = 10 n = 2). Packet size is 2

unit packets.

www.manaraa.com

114

100

90

Full Scale Simulation80

S in g le S w itch S im u la tio n

Idea l switch70

60

50

<10

30

20

10

0
0 . 0 0.1 0 . 2 0 . 3 0. 4 0. 5 0.G 0 . 7 0 . 9 1 . 00 . 6

Channel U t i l i z a t i o n

Figure 4.25: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 2D Mesh (k = 10 n = 2). Packet size is 4

unit packets.

www.manaraa.com

115

j?
ir§
x>$

100

F u ll S c a le S im u la t io n

S in g le S w itch S im u la t io n

Id e a l Sw itch

90

80

70

60

50

40

30

20

10

0
0 . 0 0 . 1 0 . 2 0.5 1 . 00-3 0.4 0 . 6 0.7 0 . 8 0.9

C hannel U t i l i z a t i o n

Figure 4.26: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 2D Mesh (k = 10 n = 2). Packet size is 8

unit packets.

www.manaraa.com

116

channel should be used for routing data. The digit routing is inherently deadlock-

free. Since D elta networks are multistage, no special ports are needed for local

’’processors” .

An Omega is a particular example of a Delta network. A router in an Omega

network comprised of n-by-n switches, under uniform workload, has the following

properties [29]:

1. The channel utilization of the n input and n output channels is simply:

p = m B

where m is message generation rate and B is the length of a message.

2. The routing probabilities for the n inputs are: 1 jn .

As for fc-ary n-cubes, a simulation run of a single router provides the aver

age waiting tim e, w, per packet. The average latency of a message, T , through a

complete network can be estimated by:

T = (1 -f- w B)n + B.

where n is the number of stages that a message travels and B is the length of the

message. Similar to the average latency for a message in &-ary n-cube, (1 + wB)

represents the delay at a router and multiplying by the number of stages gives the

average latency for a unit packet. Since the virtual cut-through is used, adding B

to the average latency for the unit packet yields the average latency for a message

of length B.

www.manaraa.com

117

Fixed, Unit-Length Packets

Figures 4.27 and 4.28 compare the performance of three stage and four stage

radix 4 Omega networks, assuming fixed, unit-length packets. The data for ideal

Latency data for ideal buffers was taken from [29].

Again, the trends are the same as for Ar-ary n-cubes: DAMQ buffers provide

significant improvement over FIFO buffers, and the single router results provide a

very good approximation of full-network performance.

F ixed, M ulti-F lit Packets

Figures 4.29 to 4.31 show that increasing the packet size increases the latency

by a proportional amount, as was observed for the &-ary n-cubes. The saturation

points remain about the same.

Random Packet Sizes

Both the self-compacting buffer and the ComCobb chip support variable

packet sizes. This means that buffer fragmentation can occur if the size of a. packet

is not the multiple of the block size in the buffer. In this section, we measured

the performance of the DAMQ buffer with random packet sizes and compare the

results to the FIFO buffer and to fixed size packets (with no fragmentation). The

objective of this measurement is to discover performance changes resulting from

fragmentation in a parallel system which supports variable packet sizes. The sim

ulation was done on an Omega network with 16, 64 and 256 nodes constructed of

4 x 4 switches. The implementation of the simulator was the same as described

earlier. In all cases, the size of the buffer was fixed to 128 bytes. We chose l'andom

www.manaraa.com

118

<u
u

45

FIFO

F u ll S c a le S im u la t io n

S in g le S w itch S im u la t io n

I d e a l S w itch35

30

25

2 0

1 . 00 . 80 . 6 0.7 0.90 . 1 0 . 2 0.4 0.50 . 0 0.3

Figure 4.27: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 4 x 4 switch Omega network with 256 nodes

(4 stages).

www.manaraa.com

119

V
(J&

45&cV
3

40

35
FIFO

F u ll S c a le S im u la t io n

30

25

2 0

15

10

0 . I 0. 20 . 0 0.3 0.4 0.5 0 . 6 0.7 0 . 8 0.9 1 . 0

Figure 4.28: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for 4 x 4 Switch Omega Network with 64 Nodes

(3 stages).

www.manaraa.com

120

&S
3 - « FIFO

~ O F a l l S c a le S im u la t io n

® S in g le S w itc h S im u la t io n

~0 I d e a l S w itch

0 .0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C h annel U t i l i s a t i o n

Figure 4.29: Comparing the Network Latency of DAMQ Buffer to the Ideal and

FIFO Buffer Management Scheme for Omega Network (256 nodes). Packet size

is 2 unit packets.

www.manaraa.com

L
at

en
cy

(c

yc
le

)

121

Full Scale Simulation

S in g le S w itch S im u la tio n

I d e a l sw itc h

0 . 0 0.1 0 . 2 0.3 0.4 0.S 0 . 6 0 . 60.7 1 . 00

Figure 4.30: Comparing the Network Latency of DAMQ Scheme to the Ideal and

FIFO Buffer Management Scheme for Omega Network (256 nodes). Packet size

is 4 unit packets.

www.manaraa.com

122

1 0 0

90

FIFO

80

I d e a l Sw itch70

60

50

40

30

20

10

0
0 . 0 0 . 1 0 .30 . 2 0 .4 0 . 5 0 .7 1 . 00 .9

Channel U tiliza tio n

Figure 4.31: Comparing the Network Latency of DAMQ BufFer to the Ideal and

FIFO Buffer Management Scheme for Omega network (256 nodes). Packet size is

8 unit packets.

www.manaraa.com

123

packet size to vary from 8 bytes to 72 bytes. Within each range of packet sizes,

a packet size had the same probability of being generated. The packet size of a

fixed length of 40 bytes is the average packet size of random packet length. We

also selected the block size of the DAMQ buffer to be 8 bytes so that there is no

buffer fragmentation for fixed size packets. We ran three sets of simulation, first for

fixed size packet, second for variable packet size with the DAMQ and the third for

variable packet sizes but with FIFO buffers. Figure 4.32 shows the measurements

of network throughput vs. latency on 16, 64 and 256 nodes. The throughput is

the average number of packets per clock cycle arriving at the destination node.

As it can be seen in Figure 4.32, the fixed packet size achieves higher throughput

with lower latency. The throughput gain of fixed packet size gets higher as the

throughput increases. This is due to the fact there can be a higher possibility of

buffer fragmentation which results in lower utilization of bufFers.

4.3 Conclusion

This chapter presented an efficient way to implement a high performance

router using “self-compacting bufFers”. This technique offers the high performance

possible with a Dynamically Allocated Multi-Queue, and requires less hardware

than the alternative scheme proposed by Tamil- and Frazier [8].

The second part presented extensive simulation results comparing the perfor

mance of a self-compacting DAMQ buffer against an ideal buffer. The comparison

extends previous work by considering a much broader range of network topologies,

including several examples of k-ary n-cubes and Delta networks. In all cases, the

self-compacting buffer has performance comparable to an ideal buffer up to 80 %

www.manaraa.com

Throughput

-o

V a r ia b le p ack et le n g th (FIFO)

V a r ia b le p a c k e t l e n g th (DAMQ)

F ixed p a c k e t le n g th (DAMQ)

Figure 4.32: Comparison of DAMQ Buffer to FIFO with Random Packet Size for

Omega Nework.

www.manaraa.com

125

of the saturation bandwidth of the ideal buffer.

Additional simulation results showed how the performance of an entire net

work can be quickly and accurately approximated by simulating just a single router.

The single router simulator required 10 to 100 times less simulation time, and was

about 10 times smaller, than the full network simulator. As a specific example,

the data plotted in Figure 4.19 took about 3 days of simulation time for the full

networks, whereas single router simulation took several minutes.

www.manaraa.com

CHAPTER 5

IN P U T A N D O U TPU T PORT CONTROLLER ARCH ITECTURE

A N D ORGANIZATION

In this chapter we present an architecture of input/output port controllers

for the flexible oblivious router. The basic function of the I/O port controller is

to receive/transm it clata between paired I/O ports. It is also required th a t the

I/O port controller initiate the activities of router managing entities such as the

routing algorithm handler and the packet flow controller. In addition, the I/O port

controllers have the capability to receive/send variable length packets and a variable

number of header packets. The capability of receiving/sending a variable number of

header packets is critical for a. router if the router is used in different network sizes.

Lastly, the I/O port controller allows signals to be propagated between routers.

This function was required by the router to support multiple switching techniques.

The remainder of the chapter is organized as following. In section one, a

detailed description of the input port controller architecture is presented. In section

two, the output port controller architecture is described. Finally, section three

summarizes the chapter with a concluding remark.

5.1 Input Port Controller Architecture

As shown in Figure 5.1, the input port controller consists of a buffer, a pro

tocol unit, a length counter, a header byte counter and several signals. Following

126

www.manaraa.com

127

t o R otu ing
A lg o t i th m
H andler

t o t a l
f r e e
space

b lo c k e d

o a t h c l e a r e d

d a t a

communicat ion

p r o t o c o l u n i t

b l o.-;k°d

p a th c l e a r e d

header
b y t e
c o u n te r

s t a t u s
r e g i s t e r

l e n g th
c o u n t e r

b u f f e r

t o P ac ke t
Flow
C o n t r o l l e r

Figure 5.1: Logical Block Diagram of a Port Controller

www.manaraa.com

128

are detailed descriptions for each of the modules.

H e a d e r B y te C o u n te r: The header byte counter is used to support a variable

size of header information. For a network with n processing nodes, it is required to

have \log2(n)~\ bits in the header for routing information. If log2(n) is greater than

the data bandwidth of the input port, we need t (= \\log2(n)~\ J (data bandwidth)"])

bytes for routing information. The header byte counter stores the value t, which is

used to extract the header information from the incoming packet and to transfer

that header information to the routing algorithm handler.

T o ta l F ree Space: The total free space information is managed by the packet

flow controller. This information is needed by the input port to determine whether

it can receive more packets or not. If the size of incoming packets is greater than the

value in the total free space, the input port rejects the request from the connected

output port.

L en g th C o u n te r: The length counter holds information about the size of the

incoming packet. It is used as a counter to receive the packet and to recognize when

the reception is done. When the router supports fixed length packets, the value in

the length counter does not change for any incoming packet. However, it changes

when each new packet is ready to be received and the router is operating under the

variable length packet.

re q (re q u e s t) : The output port that is connected to the input port uses the “req”

signal to indicate that it has a packet to send.

ack (acknow ledgm en t) : The input port uses the “ack” signal to give acknowl

edgment to the connected output port that it is ready to receive a new packet,

p a th c lea red signal: The path cleared signal is used for supporting circuit

www.manaraa.com

129

switching. W hen all the paths between the source and the destination node are

available, the path cleared signal is generated by the router of the destination

node. This signal is back propagated to the source node. Upon receiving the path

cleared signal, the source node starts transferring the packet. When the end of the

packet is detected by the destination node, the path cleared signal is once again

generated by the destination router. All inp u t/o u tp u t ports receiving the path

cleared signal release the resource th a t they used to transfer the packet. Thus, the

circuit is released.

B lo ck ed S ig n a l: The blocked signal is used to support the circuit switching as

well. W hen a source node needs to set up a circuit, it sends a packet th a t has the

destination address in it. As this packet travels through the paths th a t are part of

the circuit, it may not be possible to have all paths available. If the path is not

available, the blocked signal is generated from the router. This blocked signal is

back propagated to the source node.

S ta tu s R e g is te r : The status register has two bits. The first bit is updated by the

routing algorithm handler to indicate whether the sta te of the routing algorithm

handler is in busy sta te or idle state. The second bit is managed by the packet

flow controller to indicate whether the packet flow controller is ready to accept the

d a ta or not. The input port needs to know the state of the packet flow controller

because it will not be able to receive any da ta until the routing algorithm handler

determ ines the output channel number. The execution tim e of the routing algo

rithm will vary depending on the network topology and routing algorithm used for

the network.

B u ffe r: The buffer is used to store packets when there is a m ism atch of transm is

www.manaraa.com

130

sion/reception speed between the connected output port and the routing algorithm

handler (or the packet flow controller). Part of the packet will be stored in the

buffer temporarily. This will occur when the routing algorithm handler (or packet

flow controller) is slower to receive the incoming packets than the outgoing packets

are being transm itted.

C o m m u n ic a tio n P ro to c o l U n it: The communication protocol unit is the en

gine of the input port. The action of the communication protocol unit is initiated

upon the reception of the request signal that comes along with the packet length

count. Figure 5.2 shows how the “req” and the “ack” signals are interacting for

packet reception and transmission. When the request signal arrives, the commu

nication protocol unit checks to see if the routing algorithm handler is ready to

execute its routine to determine the address of the next switch. If the routing algo

rithm handler is ready, then the communication protocol unit compares the length

count value against the total free space. If the total free space is greater than

the size of new a packet, the communication protocol unit grants the connection

to the output port. If there is not enough space available, it continues compar

isons until the total free space is greater than the size of the new packet. Once

the acknowledgment is sent out to the output port, the input/ou tpu t port starts

reception/transm ission of packet. The format of the packet is shown in Figure 5.3,

it shows the first data coming in are the header information (length information is

already sent with “req” signal). The communication protocol unit uses the header

byte counter to determine how many bytes out of the incoming data it is supposed

to transfer to the routing algorithm handler. After transferring header bytes, the

communication protocol unit checks to see if the packet flow controller is ready to

www.manaraa.com

131

<l e n g t h \ X \ / l e n g t h \
c o u n t / \ p a c k e t / \ c o u n t S
d a t a s \ / \ . d a t a /

_ / \ / —
r e q

 / \ ____________
ack

Figure 5.2: Input/O utput Port Protocol

receive the rest of the packet. It uses the status register to check the state of the

packet flow controller. If tlie packet flow controller is ready to accept the data, the

communication protocol controller transfers the rest of the packet to the packet

flow controller. Otherwise, it buffers the incoming packet and keeps checking the

availability of the packet flow controller. After it completes the packet transfer, it

lowers the “ack” signal to indicate the end of packet reception.

5.2 Output Port Controller Architecture

Header B yte Counter: The usage of the header byte counter in the output

port is the same as in the input port.

Length Register: The length register stores length information of the packet.

This information is extracted and stored in the length register while the packet is

arriving at the output port and sent out to the connected input port as part of the

communication protocol.

req l (request) signal: The “req l” signal is used by the crossbar switch to

request the connection to the output port.

www.manaraa.com

132

length header data

Figure 5.3: Packet Format

req2 (re q u es t) signal: The “req2” signal is used by the output port to request

the connection to the connected input port.

a c k l (acknow ledgm ent) signal: The output port uses an “ack l” signal to let

the crossbar switch know that it is ready to receive the packet.

ack2 (acknow ledgm ent) signal: The “ack2” signal is raised by the connected

input port and indicates that the output port can send packets.

p a th c leared signal: The usage of this signal is the same as described in the

input port.

b locked signal: The usage of this signal is the same as described in the input

port.

C o m m u n ica tio n p ro to co l u n it: The communication protocol unit of the output

port controls the packet transmission/reception between the crossbar switch and

the output port and also between the output port and the connected input port.

The same communication protocol shown in Figure 5.2 and the packet format shown

in Figure 5.3 are used. The communication protocol unit overlaps the reception

of the packet from the crossbar switch with the transmission of the packet to the

input port for fast packet delivery. The communication protocol unit is activated

by the “req l” signal from the crossbar switch. If the output port is in idle state,

the communication protocol unit sends the “ackl” to the crossbar switch to tell

www.manaraa.com

133

th a t it is ready to receive the packet. If the output is in busy state, the “ack l”

signal is held low until the state of the output port becomes the idle state. The

first information arriving out of the packet is the length data. This information

is latched into the length counter. As soon as the communication protocol unit

receives the length information, it starts establishing the connection with the input

port by raising the “req2” signal. When the communication protocol unit receives

the “ack2” signal from the input port, it transfers the packet to the input port if it

is available. Figure 5.4 shows a. logical block diagram of an output port controller

and Figure 5.5 shows an example connection of the I/O port for D elta network of

size 8. It utilizes a 2 x 2 switching element with 8 bits per d a ta line.

5.3 Conclusion

In this chapter, we presented an I/O port controller architecture for a flexible

oblivious router. Besides the function of basic communication protocol, the I/O

port controller has three im portant functions th a t include:

• The ability to support variable packet lengths.

• The ability to support a variable num ber of header packets.

• Provide a signal propagation capability to support circuit and packet switch

ing.

These three functions are crucial for a router th a t supports variable length packets

and m ultiple switching techniques. In particular, the ability to support a variable

num ber of packets allows the router to be used in many different networks and

broadens the area of the router’s application.

www.manaraa.com

134

p a t h c l e a r e d p a t h c l e a r e d

b loc ked b loc ked

req2r e q l

a c k iack l

T o c o n n e c t e d

I n p u t P o r t

h e a d e r
b y t e
c o u n t e r

BUFFER

c o m m u n ic a t io n

p r o to c o l u n i t

Figure 5.4: Logical Block Diagram of an O utput Port

www.manaraa.com

in p u t
p o r t

o u t p u t
p o r t

in p u t
p o r t

o u tp u t
p o r t

b lo c k e d
p a th c l e a r e d

r o u t e rr o u t e r

d a t a l i n e

Figure 5.5: Input/O utput Port in 2 x 2 Baseline Network

www.manaraa.com

C H A PTER 6

CO NC LUSIO N A N D FU T U R E ST U D Y

This dissertation provided the result of our study on a flexible router ar

chitecture. The contributions of this work include proposing a flexible oblivious

router architecture and evaluation of a DAMQ buffer. This section summarizes the

contributions of this dissertation.

Chapter 2 provided background surveys of topics and issues related to the

design of a router. I t included network topology, switching techniques, routing

algorithms, flow control and virtual channels along with examples.

In chapter 3, we have presented a router architecture th a t can support a

large set of oblivious routing algorithms. We have studied the routing algorithms

of over 40 interconnection networks and identified the common functions, and the

instruction set that is necessary to execute all the routing algorithms [11]. The

architecture is designed to have a programming capability so that other oblivious

routing algorithms not considered in our investigation can be supported as well. The

programming capability also allows routing algorithms to be modified if any error

in the routing algorithm is found or a better algorithm is developed later. Because

the architecture supports a wide range of interconnection networks, it can be mass-

produced and has the potential of being an “off-the-shelf” product. The overall

conclusion is th a t general purpose cost effective routers can be designed, suggesting

the possibility of a common router for m ultiple interconnection networks.

136

www.manaraa.com

137

In chapter 4, we presented a novel approach of implementing the DAMQ

buffer with a technique called “self-compacting buffer” and its evaluation. This

technique requires less hardware than the alternative scheme proposed by Tamir

and Frazier [8]. We also presented extensive simulation results comparing the per

formance of a self-compacting DAMQ buffer against an ideal and FIFO buffer.

The comparison extended previous work which was done only on a 64 node Omega

network. We have considered a much broader range of network topologies and

sizes including several examples of A:-ary rc-cubes and Delta networks. In all cases,

the self-compacting buffer has performance comparable to an ideal buffer. In ad

dition, we showed how the performance of an entire network can be quickly and

accurately approximated by simulating just a single switching element. The single

switch simulator required 10 to 100 times less simulation time, and was about 10

times smaller, than the full network simulator. One specific example showed that

the data plotted in Figure 4.20 took about 3 days of simulation time for the full

network simulator, whereas single switch simulation took several minutes.

In chapter 5, we presented an 1 /0 architecture for the flexible oblivious router.

Besides the function of basic communication protocol, the I/O port controller had

three im portant functions these include:

• The ability to support variable packet lengths.

• The ability to support a variable number of header packets.

• Provide a signal propagation capability to support circuit and packet switch

ing.

These three functions are crucial for a router that supports variable length packets

www.manaraa.com

138

and multiple switching techniques. In particular, the ability to support a variable

number of packets allows the router to be used in many different sizes of network

and widens the areas of router application.

6.1 M ajor Contributions

The major contributions of this study can be summarized as the following:

• The first part of this research sought the possibility of proposing a general

purpose router architecture.

• Common functions and an instruction set required to function with multiple

interconnection networks have been identified.

• A novel approach called a “self-compacting buffer” to implement the DAMQ

buffer has been developed.

• The performance of the DAMQ buffer on a broad range of networks including

k-ary n -cubes and Delta networks was studied and extensively reported in

this work.

• A single router simulation that is simple, fast and accurate has been proposed,

implemented and demonstrated.

• An I/O port controller architecture that can support multiple switching tech

niques, variable length packets and a variable number of header packets was

proposed.

www.manaraa.com

139

6.2 Future Research Directions

This section suggests areas for future work to complement this study. Our

short term goal is to develop the proposed architecture into hardware, and then

evaluate its performance on a real multiprocessor system. For a long term goal,

we suggest continued study to determine the possibility of a router architecture

that supports adaptive routing. In our study, we concentrated on developing a

router architecture based on oblivious routing. Overall, adaptive routing has the

potential to outperform the oblivious routing. Chapter 3 has shown our approach

for oblivious routing. A similar approach for adaptive routing would be possible.

There are several ways in which the studies introduced in chapter 4 can be

extended. First, the single router simulation technique can be applied to other

network topologies and router organizations in which the routing probabilities and

channel utilizations are symmetric. Second, a real router design would be pipelined

over several clock cycles. A performance study considering this effect could provide

better information about the benefits of that design. Third, it would be interesting

to compare the performance of wormhole flow control versus virtual cut-through

for a range of finite buffer sizes.

www.manaraa.com

BIBLIO G R A PH Y

[1] B. W. O ’Krafka, D esign and Evaluation of Directory-Based Cache Coherence
Systems, Ph.D. Thesis, University o f California, Berkeley, 1992

[2] W. J. Dally and C. L. Seitz, “The torus routing chip,” J. Distributed System s,
vol. 1, No.3, pp. 187-196, 1986.

[3] Intel Scientific Computers, A Technical Sum m ary of the iPSC /2 Concurrent
Supercom puter, Order No. 280115-001, 1988.

[4] C. L. Seitz, “The Cosmic Cube,” CACM , vol 28, N o.l, pp. 22-33, 1985.

[5] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam, B.
Moor, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski,
and J. Webb, “iWARP: An integrated solution to high-speed parallel com put
ing,” Proc. Supercomput. Conf., IEEE, pp. 330-338, November 1988.

[6] InMOS Ltd., “The 9000 Transputer Products Overview M anual,” Order Code:
DBTRA NSPST/1 1991.

[7] L. M. Li and P. K. McKinley, “A Survey of Routing Techniques in Worm
hole Networks,” Tech. Report M SU-CPS-ACS-46 , Dept, of Com puter Science,
Michigan S tate University, East Lansing, Mich., Oct. 1991.

[8] Y. Tamir and G.L. Frazier, “Dynamically-Allocated M ulti-Queue Buffers for
VLSI Communication Switches,” IE E E Transactions on Computers, vol. 14,
No. 6, pp. 725-737, 1992

[9] P. Kermani and L. Kleinrock, “V irtual cut through: A new com puter commu
nication switching technique,” Computer Networks, vol. 3, pp. 267-286, 1979.

[10] W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in M ultiprocessor
Interconnection Networks,” IE E E Trans, on Computers, vol. C-36, No.5, pp.
547-553, May 1987.

[11] J . Park, S. Vassiliadis and J. G. Delgado-Frias, “Flexible Router Architecture:
Instruction set and Organization,” IB M Technical Report TR 01.C752, pp.
1-102, September, 1993.

[12] J . Park, S. Vassiliadis and J. G. Delgado-Frias, “Flexible Router A rchitecture,”
IB M Technical Report TR 01.C7f9, pp. 1-35, September, 1993.

140

www.manaraa.com

141

[13] J. Park, S. Vassiliadis, B.W. O’krafka and J. G. Delgado-Frias, “Design and
Evaluation of a DAMQ Multiprocess Network Switch with Self-compacting
Buffer,” IBM Technical Report, May 1994.

[14] R. Arlauslcas, “iPSC/2 system: A second generation hypercube,” Third Conf.
Hypercube Concurrent Comput. and AppL, ACM, pp. 33-36, 1988.

[15] W. C. Athas and C. L. Seitz, “Multicomputers: Message-passing concurrent
computers,” IEEE Comput. Mag., vol. 21, pp. 9-24, August 1988.

[16] BBN Advanced Computers Inc., “Butterfly parallel processors overview,” B B N
Rep. 61Jf 8n March 1986.

[17] W. J. Dally, “Virtual-Channel Flow Control,” IEE E Transactions on Parallel
and Distributed Systems, vol. 3, No. 2 pp. 194-205, March 1992.

[18] W. J. Dally, “Network and processor architecture for mess age-driven com put
ers,” VLSI and Parallel Computation, Suaya and Birtwhistle, Eds. Los Altos,
CA: Morgan Kaufmann, 1990.

[19] C. L. Wu and T. Y. Feng, “On a class of multistage interconnection networks,”
IE E E Transactions on Computers, vol. C-29, No.8, pp. 694-702, Aug. 1980.

[20] K. Whang and F. A. Briggs, “Computer Architecture and Parallel Processing,”
MaGraw-Hill Book Company, 1987.

[21] M. J. Quinn, “Designing Efficient Algorithms for Parallel Com puters,”
MaGraw-Hill Book Company, 1984.

[22] E. Horowitz and A. Zorat, “The Binary Tree as Interconnection Network:
applications to multiprocessor systems and VLSI,” IE E E Trans, on Computers,
vol. 30, No.4, pp. 247-253, April 1981.

[23] C. E. Leiserson, “Fat-tree: universal networks for hardware-efficient supercom
puting,” Proc. o f 1985 Intl. Conf. Parallel Processing, pp. 393-402, 1985.

[24] F .J. Meyer and D.K. Pradhan, “Flip-tree: fault-tolerant graphs with wide
containers,” IEEE Transaction on Computers, vol.37, No.4, pp. 472-478, April
1988.

[25] J.R . Goodman and C.H. Sequin, “Hypertree: a multiprocessor interconnection
topology,” IEEE Transaction on Computers, vol.30, No.12, pp. 923-933, Dec.
1981.

[26] B.L. Menezes and R. Jenevein, “The KYKLOS multicomputer network and its
message traffic,” IEEE Transaction on Computers, vol.34, No.8, pp. 765-768,
Aug. 1985.

www.manaraa.com

142

[27] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE
Transaction on Computers, vol.C-24, No.12, pp. 1145-1155, Dec. 1975.

[28] A. DeCegama, Parallel Processor Architectures and VLSI Hardware, Engle
wood Cliffs, New Jersey, Prentice Hall, 1989.

[29] C. P. Kruskal and M. Snir, “A unified theory of interconnection network struc
ture,” Ultracomputer Note])106.

[30] W. Lin and C. L. Wu, “Reconfiguration Procedures for a Polymorphic and
Partitionable Multiprocess,” IEEE Transactions on Computers, vol. C-35, No.
10, pp. 910-916, Oct. 1986.

[31] Y. Tamir and G. L. Frazier, “Hardware Support for High-Priority Traffic in
VLSI Communication Switches,” Journal o f Parallel and Distributed Comput
ing, vol. 14, No.4, pp. 402-416, April 1992.

[32] J. W. Dolter, P. Ramanathan, and K. G. Shin, “A Microprogramable VLSI
Routing Controller for HARTS,” Intern. Conf. on Computer Design: VLSI in
Computers and Processors, Cat. No. 89CH2794-6, pp. 160-163, October 1989.

[33] C. Y. Chang, T. W. Hou and C. K. Shieh, “Design of Wormhole Router for
Distributed Memory Multiprocessor,” Electronic Letters, vol. 27, No. 25, pp.
2385-2387, 1991.

[34] Y. Tamir and G. L. Frazier, “Dynamically-Allocated Multi-Queue Buffers for
VLSI Communication Switches,” IEEE Transactions on Computers, vol. 41,
No.6, pp. 725-737, June 1992.

[35] W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,”
IEEE Transaction on Computers, vol.39, No.6, pp. 775-785, 1990.

[36] II. Sullivan and T. R. Brashkow, “A large scale homogeneous machine,” in
Proc. 4th Annu. Symp. Comput. Architecture, pp. 105-124, 1977.

[37] D. H. Linder and J. C. Harden, “An adaptive and Fault-Tolerant Wormhole
Routing Strategy for k-ary n-cubes,” IEEE Transactions on Computers, vol.
40, No. 1, pp. 2-12, January 1991.

[38] W. J. Dally and H. Akoi, “Deadlock-Free Adaptive Routing in M ulticomputer
Networks Using Virtual Channels,” IEEE Transactions on Parallel and Dis
tributed Systems, vol. 4, No. 4, pp. 466-475, April 1993.

[39] H. C. Chi and Y. Tamir, “Decomposed Arbiters for Large Crossbars with
Multi-Queue Input Buffers,” IEEE Inter. Conf. on Comput Design: VLSI in
Computers and Processor, Cat. No. 91CH3040-3, pp. 233-238, 1991.

www.manaraa.com

143

[40] K. Choi and W. S. Adams, “VLSI Implementation of a 256 x 256 Crossbar
Interconnection Network,” Proceedings. Sixth International Parallel Processing
Symposium, Cat. No. 92TH0419-2, pp. 289-293, 1992.

[41] M. K. Vernon and U. Manbar, “Distributed round-robin and first-come-first-
serve protocols and their application to multiprocessor bus arbitration,” in
Proc. 15th Annu. Int. Symp. Comput. Architecture, pp. 267-277, 1988.

[42] T. Lang and M. Valero, “M-users B-servers arbiter for multiple-buses m ulti
processors,” Microprocessing and Microprogramming, pp. 11-18, Oct. 1982.

[43] S. Nugent, “The iPSC/2 Direct-Connect Communications Technology,” Third
Conf. on Ilypercube Concurrent Comput. and Applications, vol. 1, pp. 51-60,
Jan. 1988.

[44] S. Konstantinidou, “Chaos router: architecture and performance,” Comput.
Archit. News, vol. 19, No.3 pp. 212-221, May 1991.

[45] M. S. Chen and K. G. Shin, “Addressing, routing and broadcasting in hexago
nal mesh multiprocessors,” IEEE Transaction on Computers, vol.39, No.l pp.
10-18, Jan. 1990.

[46] Seitz, C.L. Athas, W.C. Flaig, C.M. M artin, A.J. Seizovic, J. Steele and C.S.
Wen King Su, “The architecture and programming of the Ametek Series 2010
m ulticom puter,” Third Conference on Hypercube Concurrent Computers and
Applications, vol.l, pp. 33-36, 1988.

[47] Peterson, C. Sutton, J. and Wiley, P., “iWarp: a 100-MOPS, LIW micropro
cessor for m ulticomputers,” IEEE Micro, vol.11, No.3 pp. 26-29, 81-89, June
1991.

[48] Dally, W .J. Chien, A. Davison, R. Fiske, J.A.S. Furman, S. Fyler, G. Gaunce,
D.B. Horwat, W. Kaneshiro, S. Keen, J.S. Lethin, R.A. Noakes, M. Nuth,
P.R. Spertus, E. Totty, B. Wallach, D. and Wills, D.S., “The J machine: a
fine grain parallel com puter,” Symposium on High Performance Computing for
Flight Vehicles, vol.3, No. 1-4, pp. 7-15, 1992.

[49] Lillevik, S.L., “DELTA: a 30 gigaflop parallel supercomputer for Touchstone,”
Northcon. Conference Record, pp. 294-304, 1990.

[50] B. W. Arden and II. Lee, “Analysis of chordal ring network,” IE E E Transaction
on Computers, vol.30, pp. 291-296, 1981.

[51] W. J. Dally, “Virtual-Channel Flow Control,” In Proceedings o f the 17th A n
nual International Symposium on Computer A rchitecture, pp. 60-68, May 1990.

www.manaraa.com

144

[52] W. K. Tsai, Y. C. Kim and N. Bagherzadeh, “A hierarchical mesh architec
ture,” Proc. fth Annual Parallel Processing Symposium, pp. 923-933, 1990.

[53] N. S. Woo and A. Agrawala, “A symmetric tree structure interconnection
network and its message traffic,” IEEE Transaction on Computers, vol.34,
No.8, pp. 765-768, Aug. 1985.

[54] F. T. Leighton, “New lower bound techniques for VLSI,” Math. Syst. Theory,
vol. 17, N o.l, p. 47, 1984.

[55] P. Banerjee, “Algorithm-based fault tolerance on a hypercube multiprocessor,”
IEEE Transaction on Computers, vol.39, No.9, pp. 1132-1144, 1990.

[56] A. S. Youssef and B. Narahari, “The banyan-hypercube networks,” IEEE
Transaction on Parallel and Distributed Systems, vol.l, No.2, pp. 160-169,
1990.

[57] P. W. Dowd and K. Jabbour, “Spanning multiaccess channel hypercube com
puter interconnection,” IEEE Transaction on Computers, vol.37, No.9, pp.
1137-1142, 1988.

[58] N. Tana.be, T. Suzuoka, and S. Nakamura, “Base-m n-cube high performance
interconnection networks for highly parallel computer prodigy,” 1991 Intl.
Conf. Parallel Processing, pp. 1509—1516, 1991.

[59] L. D. W ittie, “Communication structures for large networks of microcomput
ers,” IEEE Transaction on Computers, vol.30, No.4, pp. 264-273, April 1981.

[60] L. N. Bhuyan and D. P. Agrawal, “A general class of processor interconnection
strategies,” Procd. 9th Ann. Symp. Computer Architecture, vol.39, N o.l, pp.
10-18, 1990.

[61] V. Benes, “Optimal Rearrangeable multistage connection networks,” Bell Sys
tem Technical Journal, vol.40, No.4 Pt. 2, pp. 1641-1656, 1964.

[62] R. J. McMillen and H. J. Siegel, “Routing schemes for the augmented data
m anipulate network in an MIMD system,” IEEE Transaction on Computers,
vol.31, No.12 pp. 1202-1214, December 1982.

[63] G. B. Aams and H. J. Siegel, “The extra stage cube:a fault-tolerant intercon
nection network for supersystems,” IEEE Transaction on Computers, vol.31,
No.5 pp. 247-253, 1982.

[64] V. Cherkassky and et al., “Reliability and fault diagnosis of fault tolerant
multistage interconnection networks,” Proc. l f th Fault Tolerant Computers
Symp, pp. 246-251, June 1984.

www.manaraa.com

145

[65] D. S. Parker and C. S. Raghavendra, “The gamma network,” IEEE Transac
tion on Computers, vol.33, No.4 pp. 367-373, 1984.

[66] A. El-Amawy and S. Latifi, “Properties of and performance of folded hyper
cubes,” IEEE Transaction on Parallel and Distributed System, vol.2, No.l, pp.
31-42, 1991.

[67] S. P. Dandamudi and D. L. Eager, “Hierarchical interconnection networks for
multicomputer systems,” IEEE Transaction on Computers, vol.39, No.6, pp.
786-797, 1990.

[68] N. Pippenger, “On crossbar switching networks,” IEEE Transaction on Com
munications, vol.COM-23, pp. 646-659, 1975.

[69] P. K. Bansal, K. Singh and R. C. Joshi, “Quad tree: a cost effective fault tol
erant multistage interconnection,” IEEE INFOCOM ’92: Conf. on Computer
Communications, vol.2, pp. 860-866, 1992.

[70] J. Park, S. Vassiliadis and J. G. Delgado-Frias, “Input and Output Port Con
troller Architecture and Organization,” IBM Technical Report, 1994.

[71] X. Lin and L. M. Ni, “Deadlock-Free Multicast Wormhole Routing in Multi
computer Networks,” Proc. 18th In t’l Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., Order No. 2146, 1991, pp. 116-125.

[72] A. Agarwal, “Limits on Interconnection Network Performance,” IEEE Trans
action on Parallel and Distribution, vol.2, No.4, pp. 398-412, 1991.

[73] S. Abraham and K. Padmanahan, “Performance of the Direct Binary n-Cube
Network for Multiprocessors,” IEEE Transaction on Computers, vol.38, No.7,
pp. 1000-1011, July 1991.

